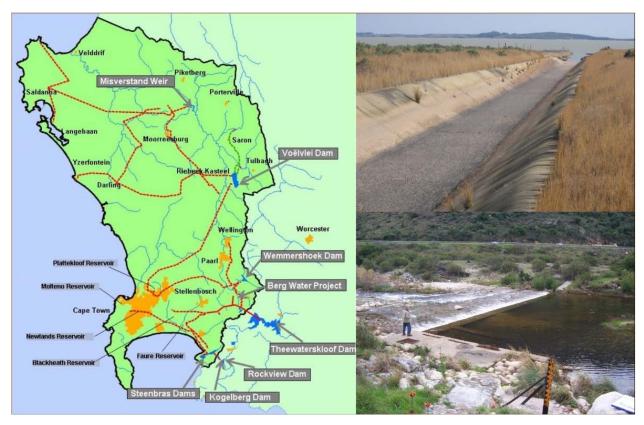
Report No: P WMA 19/G10/00/2413/6


Department of Water Affairs Directorate: Options Analysis

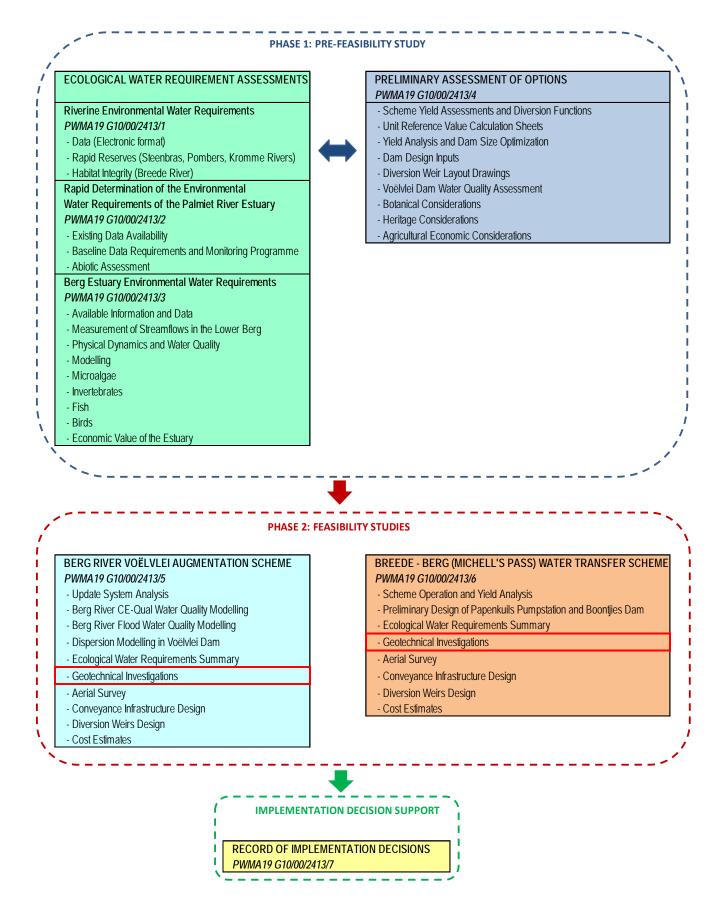
PRE-FEASIBILITY AND FEASIBILITY STUDIES FOR AUGMENTATION OF THE WESTERN CAPE WATER SUPPLY SYSTEM BY MEANS OF FURTHER SURFACE WATER DEVELOPMENTS

REPORT No.3 – VOLUME 2 Breede-Berg (Michell's Pass) Water Transfer Scheme

APPENDIX No.8

Geotechnical Investigations for the Berg River-Voëlvlei Augmentation Scheme, and the Breede-Berg (Michell's Pass) Water Transfer Scheme

December 2012


STUDY REPORT LIST

REPORT No	REPORT TITLE	VOLUME No.	DWA REPORT No.	VOLUME TITLE
				Riverine Environmental Water Requirements
				Appendix 1: EWR data for the Breede River
			PWMA19	Appendix 2: EWR data for the Palmiet River
	ECOLOGICAL WATER REQUIREMENT ASSESSMENTS	Vol 1	G10/00/2413/1	Appendix 3: EWR data for the Berg River
				Appendix 4: Task 3.1: Rapid Reserve assessments (quantity) for the Steenbras, Pombers and Kromme Rivers
				Appendix 5: Habitat Integrity Report – Breede River
				Rapid Determination of the Environmental Water Requirements of the Palmiet River Estuary
		Vol 2	PWMA19 G10/00/2413/2	Appendix A: Summary of data available for the RDM investigations undertaken during 2007 and 2008
	ECOLOGICAL		010/00/2413/2	Appendix B: Summary of baseline data requirements and the long- term monitoring programme
1	WATER REQUIREMENT			Appendix C: Abiotic Specialist Report
				Berg Estuary Environmental Water Requirements
				Appendix A: Available information and data
				Appendix B: Measurement of streamflows in the Lower Berg downstream of Misverstand Dam
		Vol 3	PWMA19 G10/00/2413/3	Appendix C: Specialist Report – Physical dynamics and water quality
				Appendix D: Specialist Report – Modelling
				Appendix E: Specialist Report – Microalgae
				Appendix F: Specialist Report – Invertebrates
				Appendix G: Specialist Report – Fish
				Appendix H: Specialist Report – Birds
				Appendix I: Specialist Report – The economic value of the Berg River Estuary
				Appendix 1: Scheme Yield Assessments and Diversion Functions
				Appendix 2: Unit Reference Value Calculation Sheets
				Appendix 3: Yield Analysis and Dam Size Optimization
	PRELIMINARY			Appendix 4: Dam Design Inputs
2	ASSESSMENT OF OPTIONS		PWMA19 G10/00/2413/4	Appendix 5: Diversion Weir Layout Drawings
				Appendix 6: Voëlvlei Dam Water Quality Assessment
				Appendix 7: Botanical Considerations
				Appendix 8: Heritage Considerations
				Appendix 9: Agricultural Economic Considerations

STUDY REPORT LIST (cntd)

REPORT No	REPORT TITLE	VOLUME No.	DWA REPORT No.	VOLUME TITLE
				Berg River-Voëlvlei Augmentation Scheme
				Appendix 1: Updating of the Western Cape Water Supply System Analysis for the Berg River-Voëlvlei Augmentation Scheme
		Vol 1	PWMA19	Appendix 2: Configuration, Calibration and Application of the CE- QUAL-W2 model to Voëlvlei Dam for the Berg River-Voëlvlei Augmentation Scheme
		VOLT	G10/00/2413/5	Appendix 3: Monitoring Water Quality During Flood Events in the Middle Berg River (Winter 2011), for the Berg River-Voëlvlei Augmentation Scheme
				Appendix 4: Dispersion Modelling in Voëlvlei Dam from Berg River Water Transfers for the Berg River-Voëlvlei Augmentation Scheme
				Appendix 7 - 12: See list under Volume 2 below
				Breede-Berg (Michell's Pass) Water Transfer Scheme
	FEASIBILITY STUDIES	Vol 2	PWMA19 G10/00/2413/6	Appendix 5: Scheme Operation and Yield Analyses with Ecological Flow Requirements for the Breede-Berg (Michell's Pass) Water Transfer Scheme
3				Appendix 6: Preliminary Design of Papenkuils Pump Station Upgrade and Pre-Feasibility Design of the Boontjies Dam, for the Breede-Berg (Michell's Pass) Water Transfer Scheme
				Appendix 7: Ecological Water Requirements Assessment Summary for the Berg River-Voëlvlei Augmentation Scheme, and the Breede Berg (Michell's Pass) Water Transfer Scheme
				Appendix 8: Geotechnical Investigations for the Berg River-Voëlvlei Augmentation Scheme, and the Breede-Berg (Michell's Pass) Water Transfer Scheme
				Appendix 9: LiDAR Aerial Survey, for the Berg River-Voëlvlei Augmentation Scheme, and the Breede-Berg (Michell's Pass) Water Transfer Scheme
				Appendix 10: Conveyance Infrastructure Design Report, for the Berg River-Voëlvlei Augmentation Scheme, and the Breede-Berg (Michell's Pass) Water Transfer Scheme
				Appendix 11: Diversion Weirs Design for the Berg River-Voëlvlei Augmentation Scheme, and the Breede-Berg (Michell's Pass) Water Transfer Scheme
				Appendix 12: Cost Estimates for the Berg River-Voëlvlei Augmentation Scheme, and the Breede-Berg (Michell's Pass) Water Transfer Scheme
4	RECORD OF IMPLEMENTATION DECISIONS	ON	PWMA19 G10/00/2413/7	

STUDY REPORT MATRIX DIAGRAM

Contents

EXECUTIVE SUMMARY	<i>iii</i>
1. INTRODUCTION	1
2. DESCRIPTION OF THE PROJECT	1
3. DESCRIPTION OF THE INVESTIGATIONS	2
3.1 Exploratory Drilling	2
3.2 Trial Pitting	
3.3 Mapping	
3.4 Laboratory Testing	5
3.4.1 Soil Tests	5
3.4.2 Chemical Tests on Water Samples	5
4. DESK STUDY	6
5. BERG RIVER WEIR AND PIPELINE – SCHEME A	6
5.1 Geology and Geomorphology	7
5.2 Berg River Weir	
5.2.1 The Proposed Weir Structure	7
5.2.2 Geology of the Weir Site	7
5.2.3 Geotechnical Assessment of the Weir Site	9
5.2.3.1 The Left Flank and the River Section	9
5.2.3.2 Right Flank	11
5.2.3.3 Pump Station	12
5.3 Berg River to Voëlvlei Pipeline	
5.3.1 The Pipeline Structure	
5.3.2 Geotechnical Assessment of the Pipeline Route	
5.3.2.1 Anticipated Soil and Rock Profiles	
5.3.2.2 Groundwater	
5.3.2.3 Excavation Conditions	
5.3.2.4 Stability of Excavated Slopes in the Pipe Trench	
5.3.2.5 Potential Use of Excavated Material	17
6. MICHELL'S PASS WEIR AND MICHELL'S PASS PIPELINE - S B 19	SCHEME
6.1 Geology and Geomorphology	19
6.2 The Proposed Michell's Pass Weir	19
6.2.1 The Weir Structure	19
6.2.2 Geology of the Weir Site	20
6.2.3 Geotechnical Assessment of the Weir Site	20

6.2.3	Geotechnical Assessment of the Weir Site	20
5.3 Mich	nell's Pass Pipeline	20
	The Pipeline Structure	20
6.3.2	Geotechnical Assessment of the Pipeline Route	20
6.3.2.1	Anticipated Soil and Rock Profiles	25
6.3.2.2	Groundwater	25
6.3.2.3	Excavation Conditions	25
6.3.2.4	Stability of Excavated Slopes in the Pipe Trench	26

Tables

TABLE 1: BERG RIVER TO VOËLVLEI PIPELINE - SUMMARY OF GROUND AND CONSTRUCTION	
CONDITIONS AND MATERIAL USAGE	_ 14
TABLE 1 (cont): BERG RIVER TO VOËLVLEI PIPELINE - SUMMARY OF GROUND AND CONSTRUCT	TION
CONDITIONS AND MATERIAL USAGE	_ 15
TABLE 2: MICHELL'S PASS PIPELINE - SUMMARY OF GROUND AND CONSTRUCTION CONDITIO	NS
AND MATERIAL USAGE	_ 23
TABLE 2 (cont): MICHELL'S PASS PIPELINE - SUMMARY OF GROUND AND CONSTRUCTION	
CONDITIONS AND MATERIAL USAGE	_ 24

Figures

FIGURE 1 BERG RIVER WEIR – LAYOUT OF SITE INVESTIGATIONS	_ 4
FIGURE 2 BERG RIVER WEIR – GEOLOGICAL LONG SECTION	_ 9
FIGURE 3 BERG RIVER TO VOËLVLEI DAM PIPELINE	_12
FIGURE 4 MICHELL'S PASS TO BLOUSLOOT OR BOONTJIES RIVER PIPELINE	20

Annexure

REVIEW OF THE GEOTECHNICAL REPORT BY MR. R. MCKELLAR, SPECIALIST CONSULTANT TO WCWC JV

Appendices

Appendix A	Borehole Logs
Appendix B	Description of Soil Profiles in Trial Pits
Appendix C	Results of Laboratory Tests on Soil Samples
Appendix D	Results of Laboratory Tests on Water Samples

Executive Summary

This report presents the results of the geotechnical investigations for two schemes for the possible augmentation of the Western Cape Water Supply System. The potential schemes investigated were:

Scheme A - the winter abstraction of surplus Berg River water into the existing Voëlvlei Dam. The structures would include a weir on the Berg River, an adjacent pump station and a 5km long rising main pipeline delivering water to the dam.

Scheme B - the winter abstraction of surplus Breede River water at Michell's Pass into the Voëlvlei Dam. The structures would include a weir on the Breede River, just upstream of the bridge on the R43, desilting facilities, an inverted siphon under the river and an approximately 8km or 9km pipeline gravitating water to the Blousloot or Boontjies Rivers and thereafter via existing inlet works in Nuwekloof and the existing canal into the dam.

The investigations were conducted at feasibility level and were generally conceptualised by the Western Cape Water Consultants JV and undertaken under contract by Fairbrother Geotechnical Engineering cc with R.A. Bradshaw & Associates cc, Consulting Engineering Geologists, acting as the independent Professional Service Provider.

The investigations comprised mapping of the bedrock and the exploratory drilling of eight boreholes at the Berg River weir site, and the excavation of nine trial pits along the Berg River Pipeline route and thirteen pits along the Michell's Pass route. Basic laboratory testing of soils and groundwater from the trial pits supplemented the field investigations.

The feasibility investigations have provided a general level of information on ground and construction conditions along the pipeline routes and for the weir sites for both Schemes A and B and the information can be used as part of the overall evaluation of the most suitable scheme.

Geotechnical conditions at the Berg River weir site are more favourable than the Michell's Pass site, particularly if an adequate length of spillway can be provided in the general area of the rock exposures on the west side of the river channel.

The least likely impact from groundwater is anticipated along the proposed Berg River pipeline route.

Machine excavation is generally expected to be possible along both pipeline routes. Approximately half of the Berg River route will be excavated in materials in which overbreak can be more easily controlled and narrower excavation profiles could be adopted. In contrast, approximately threequarters of the Michell's Pass route will be excavated in alluvium which will be less stable and over-excavation is likely.

The potential for use of excavated materials for selected granular material, selected fill and main fill is greater on the Berg River pipeline route.

The routing of the pipeline along the right bank of the Berg River should be investigated because it would avoid a river crossing.

Although only partly geotechnically related, the disruption to farming activities and the traverses through orchards and vineyards along the Berg River pipeline route would be significantly less than that along the Michell's Pass route.

Based on the assessments above, the Berg River pipeline route is considered geotechnically more favourable than the Michell's Pass route.

The investigations undertaken to date have been required by the WCWC JV to support the feasibility studies and the preliminary designs. If either schemes progress to detailed design investigation, then consideration should be given to investigating the following aspects at a greater level of detail (and confidence): (i) the optimum position for a pump station at the Berg River weir, (ii) the nature of the alluvium and particularly the depth to and the condition of the bedrock at the pipeline river crossings, (iii) more detailed trial pitting along the pipeline routes, and (iv) specific laboratory testing to confirm the suitability of the sandy soils for use as selected granular material.

1. INTRODUCTION

The Department of Water Affairs (DWA) appointed the Western Cape Water Consultants Joint Venture (WCWC JV) comprising Aurecon (SA) and Worley Parsons (formerly Kwezi V3 Consulting Engineers) and Southern Waters to undertake a feasibility study for the possible augmentation of the Western Cape Water Supply System.

Two potential schemes are being investigated:

- Scheme A the winter abstraction of surplus Berg River water into the existing Voëlvlei Dam
- Scheme B the winter abstraction of surplus Breede River water at Michell's Pass into the Voëlvlei Dam

A geotechnical investigation was required for the proposed pipelines and weirs on the Berg and Breede Rivers, as well as the associated ancillary structures. On the basis of a tender process, Fairbrother Geotechnical Engineering cc (FGE) was appointed to undertake the investigation. FGE subsequently appointed R. A. Bradshaw & Associates cc (RABA) as the specified independent Professional Service Provider to provide professional services related to the drilling of boreholes, excavation of trial pits, laboratory testing, administration of the geotechnical investigations, reporting and liaison with WCWC JV.

This report presents the results of the site investigations, which were undertaken during the period early May to early July 2011, and the associated laboratory testing.

A review of the geotechnical report by Mr. R. McKellar, Specialist Consultant to WCWC JV is annexed as part of this report.

2. DESCRIPTION OF THE PROJECT

The two schemes can be described as follows:

Scheme A (Berg River pipeline and weir)

This scheme would comprise:

- A new weir across the Berg River at Lorelei Farm, which is located approximately 5km due west of the northern part of Voëlvlei Dam.
- A new pump station adjacent to the proposed weir site. The pump station would probably be located on the left bank of the river.
- A large diameter rising main (1.2m to 1.5m diameter) which is approximately 5km long and would discharge into Voëlvlei Dam in the vicinity of the southern abutment of its northern embankment.

Aurecon had reconnoitred the Berg River for suitable or potential weir sites and the site at Lorelei Farm was the only place where outcrop is exposed in the river channel itself.

Scheme B (Michell's Pass pipeline and Michell's Pass weir)

This scheme would comprise:

- A new weir across the Breede River at the location of the existing DWA streamflow gauging station (H1H006) at Witbrug (lower end of Michell's Pass).
- Limited desilting facilities
- A large diameter gravity pipeline (1.2m to 1.5m diameter) which is approximately 8km or 9km long and which would deliver water from the abstraction point to an outlet structure and chute on either the Boontjies or Blousloot Rivers. The pipeline would cross below the Breede River as an inverted siphon.

The water delivered to one of the above rivers will flow down the Boontjies River to the existing diversion weir in the Nuwekloof, and thence to Voëlvlei Dam via the existing canal system.

3. DESCRIPTION OF THE INVESTIGATIONS

The scope of work, particularly with reference to the position and number of boreholes at the Berg River weir site and the method and extent of pitting along the pipelines, was changed during the site investigation period. In addition to describing the field and laboratory investigations, this section therefore also describes the background to the changes.

Field investigations comprised exploratory drilling and geological mapping at the Berg River weir site, and trial pitting along the possible Berg and Michell's Pass pipeline routes. A trial pit was also excavated on the lower left bank at the existing weir in Michell's Pass. Based on the recommendations from a Geophysicist, and after consultation with DWA, the originally specified seismic survey at the proposed Berg River weir site was substituted by additional exploratory drilling. Laboratory testing of soils and groundwater was also undertaken.

3.1 Exploratory Drilling

The initial scope for the drilling program, which was determined by WCWC JV, included drilling four boreholes, two on the left bank and two on the right bank at the Berg River weir site.

Access to the left bank was initially denied before the exploratory program commenced and the positions of the boreholes were consequently modified. In view of the visible rock outcrop on the left bank and the uncertainty of the geology on the opposite bank, the need to focus the drilling the right bank was further recognized. The modified layout was to include one borehole as close to the right bank as possible and one some 50m to the east along a possible weir centreline. The third hole would be drilled at an appropriate position along the centreline once the initial drilling results were available. The position of the fourth hole had initially been intended to calibrate the results of a seismic survey across the river, the purpose of which (as described above) would no longer be necessary.

Based on the results of the initial three boreholes, the advice obtained from the Consulting Geophysicist was that procurement of meaningful seismic data in the geological and groundwater environment at the weir site was unlikely.

This advice was discussed at a meeting on 20 May 2011 attended by Messrs. R. McKellar, Specialist Consultant to WCWC JV, G. English, Aurecon Consulting Engineers, A. Meerburg (FGE) and R.

Bradshaw (RABA). It was agreed at the meeting that the recommendation to DWA would be to not undertake a seismic survey, but to rather substitute this with additional drilling with special emphasis on the river channel area. RABA were requested to motivate the substitution.

A letter (RABA reference 2-119411, dated 23 May 2011) was submitted to DWA who agreed to the substitution and the following drilling layout was determined in conjunction with Messrs McKellar and English:

- a low angled borehole (BH 4) below the river to determine the depth to bedrock below the river.
- one vertical borehole (BH 5) on the extreme right flank on the possible centreline approximately 30m from BH 1.
- one vertical borehole (BH 6) to be located approximately 30m downstream from BH 2 and as close to the river as possible

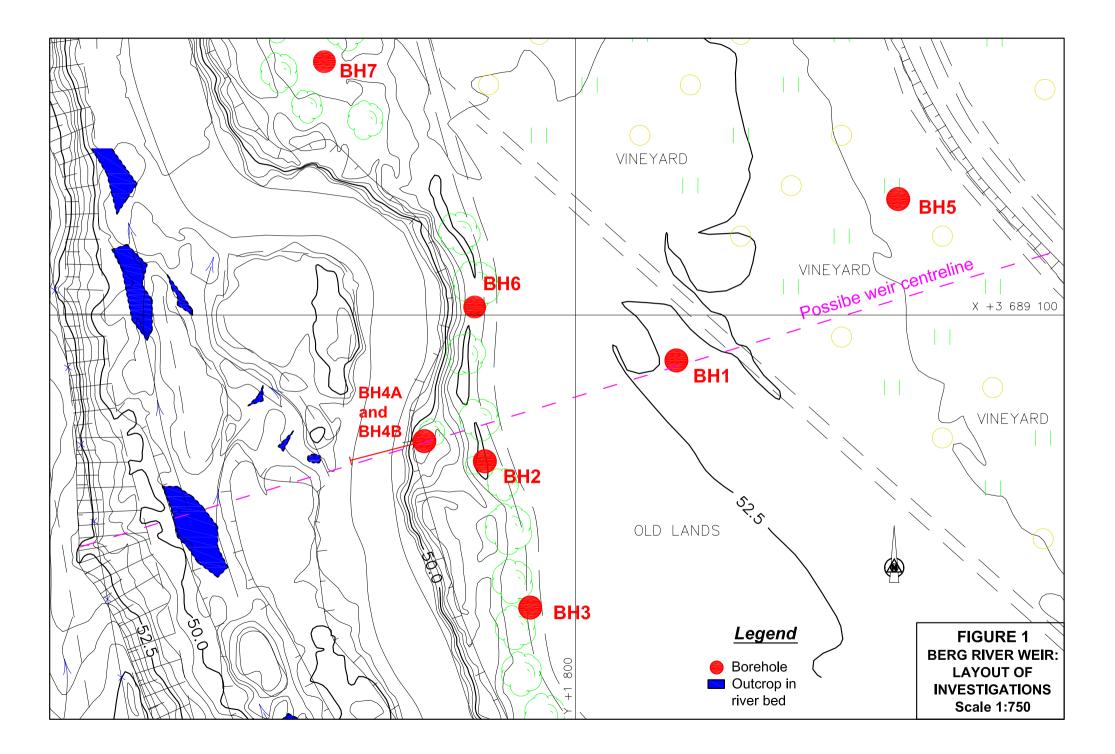
A dumpy level survey of the right bank on the centreline revealed that a very low angled borehole would daylight in the river bank and was therefore impractical, with a risk of not obtaining the desired information. A 60° borehole (BH 4A) and a 25° borehole (BH 4B) were therefore proposed and drilled instead of the single very low angle hole.

In mid-June, Mr McKellar requested that an additional vertical borehole should be drilled downstream of the possible centreline on the right bank where the river swings westwards. The borehole (BH 7) completed the current programme of drilling for the feasibility study.

The positions of the boreholes are illustrated on Figure 1.

The eight boreholes were drilled using a combination of washboring, SPT testing and NWD4 doubletube core drilling.

The borehole cores were logged according to standard South African practice and the borehole logs are presented in Appendix A of this report.


The borehole cores are stored at the DWA's premises at Voëlvlei Dam.

3.2 Trial Pitting

Trial pitting was undertaken at the designated positions, which had been predetermined by WCWC JV, along both the Berg and Michell's Pass pipeline routes. A total of twenty-two pits were excavated – nine on the Berg River pipeline route and thirteen on the Michell's Pass pipeline route.

Landowner objections were received by the WCWC JV regarding the intended use of (and likely damage caused by) a track-mounted excavator. As such all the pits were excavated with a wheel-mounted digger/loader. The pits were extended to the practical limit of excavation or refusal. The limit was either at approximately 3m depth or at depths at which massive collapse of the sidewalls of the pits prevented deeper excavation without excessive lateral extension of the pits.

The soils exposed in the sidewalls of the pits were described according to standard South African practice and the descriptions of the soil profiles are presented in Appendix B.

The GPS (WGS 84) coordinate of each pit was recorded and the coordinates are shown on the soil profile sheets.

The positions of the pits along the Berg and Michell's Pass pipelines are presented on Figures 3 and 4 respectively.

The use of a wheel-mounted machine further alleviated anticipated problems regarding access to certain trial pit locations.

Formal and informal erosion protection measures and the inlet works for the local Artois irrigation water supply system are present on the left bank of the existing weir at Michell's Pass. Limited access and limited locations for trial pitting close to the weir were encountered. As such MP 1 was excavated some 15m upstream of the weir's centreline and just above river level. Gravel and bouldery alluvium was encountered and, with water inflow, the sidewalls of the pit collapsed before bedrock could be exposed. Deeper excavation with an excavator would be possible at the expense of creating a large hole with consequent disturbance of the ground in an area vulnerable to river erosion.

The sidewalls of trial pits MP 2 and MP 3 collapsed when the pits reached depths of 2.3m and 2.4m respectively. The shape of the initial rectangular excavation changed rapidly to circular and deeper excavation was not possible without creating a very large excavation footprint. An adjacent road and pipeline might also have been damaged at MP 3 if excavation had been continued to that extent.

3.3 Mapping

The exposures of rock in the river channel at the Berg River weir site were mapped using a handheld GPS instrument to an instrument-indicated accuracy of 3m.

The distribution of the outcrop in this area is illustrated in Figure 1.

3.4 Laboratory Testing

3.4.1 Soil Tests

Twenty-three disturbed samples were taken from representative soil layers in the trial pits along both pipeline routes.

Foundation indicator tests were undertaken on seventeen samples and grading analyses to 0.075mm sieve size were undertaken on six samples. The testing was undertaken by Geoscience Laboratory (Pty) Ltd.

The laboratory test sheets are presented in Appendix C.

3.4.2 Chemical Tests on Water Samples

Samples of groundwater were obtained from three of the four pits where groundwater was encountered. The pits (MP 6 to MP 9) were all located on the Michell's Pass pipeline route. Because of sidewall instability, conditions were deemed too dangerous to enter MP 9 to sample the water.

The following tests were undertaken on these samples: pH, alkalinity, chloride, sulphate and calcium contents and total dissolved salts (TDS).

The testing was undertaken by Bemlab (Pty) Ltd. The laboratory test sheets are presented in Appendix D.

4. DESK STUDY

Part of the scope for the Professional Service Provider was to undertake a desk study to define and finalise the Scope of Works. The information used in this desk study was obtained from the following:

- Two, 1:10 000 rectified, colour aerial photographic images showing the pipeline routes and WCWC JV's proposed trial pit positions. The images were provided by Aurecon.
- A survey of the Berg River weir site with contours and at 0.5m intervals. The survey is based on photogrammetric mapping.
- The 1:250 000 Geological Series Maps 3318 Cape Town and 3319 of Worcester and the explanatory booklets entitled:
 - The Geology of the Cape Town Area, 1992, Geological Survey
 - o The Geology of the Worcester Area, 1992, Geological Survey
- Drawings from the Cape Provincial Administration Department of Roads showing details of the design of the bridge immediately downstream from the Michell's Pass weir. The drawings, which were produced in 1986, show a soil profile comprising sandstone gravel and boulders overlying hard to very hard rock quartzite and quartzitic sandstone and an 'interpolated rock line'. Reference is made on the drawings to borehole data, but the borehole data were not provided.

The drawings indicate that circular caissons were used instead of the originally planned piles and that the caissons were founded significantly deeper than planned presumably either due to thicker alluvium or weathered bedrock.

- Information in the Author's possession from the extensive site investigations undertaken for the proposed Elandsberg Pumped Storage Scheme. The underground power station and the outlet for this scheme were to have been constructed on the eastern side of Voëlvlei Dam.
- Information from the geotechnical site investigations conducted for an emergency transformer yard in Hermon and for low-cost housing in Gouda.

5. BERG RIVER WEIR AND PIPELINE – SCHEME A

This section discusses the geology and geotechnical conditions at the proposed weir site and along the pipeline route.

5.1 Geology and Geomorphology

The 1:250 000 Geological Series Map indicates that the area investigated for Scheme A is underlain by the shales and siltstones of the Porterville Formation of the Malmesbury Group that are masked by alluvial deposits of Quaternary Age.

The Berg River has strongly influenced the geomorphological development of the area.

The river has meandered over a wide swath which extends as far west as the weir site and possibly as far east as Voëlvlei Dam. This process has been accompanied by erosion and, in some areas, peneplanation of the bedrock and deposition of alluvium.

A combination of higher ground to the west of the left bank at the weir site and the occurrence of more extensive outcrop indicates that the river is probably at the westward limit of its meandering at the weir site.

Several possible phases of erosion and their position have probably occurred across the broad alluvial plane between the site and Voëlvlei Dam. The possibility therefore exists that buried river channels also occur locally. However no such channel has been discovered at the weir site, but a step occurs in the bedrock at the eastern edge of outcrop.

5.2 Berg River Weir

5.2.1 The Proposed Weir Structure

The layout of the proposed weir including its full supply or spill level will be determined as part of the feasibility study and was not available at the time. However, based on conceptual planning by the JV the weir is likely to comprise:

- A concrete gravity overspill or spillway section in the western and central parts of the river channel and,
- A possible embankment structure on the right bank

Bedrock elevation is at approximately 48.5m to 49.5m. A spillway elevation of approximately 51.5 m might be utilised with normal storage levels at the weir to be kept below existing ground levels on the right bank.

A view of the Berg River weir site is illustrated on Plate 1.

5.2.2 Geology of the Weir Site

The bedrock geology at the weir site comprises the regionally metamorphosed rocks of the Porterville Formation of the Malmesbury Group which are entirely masked on the right bank and right (eastern) part of the river channel. Scattered areas of outcrop and alluvium occur in the western part of the river channel and weathered outcrop generally occurs on the lower left flank.

<u>Alluvium</u>

The alluvium comprises two generalised layers:

Western Cape Surface Water Feasibility Studies Geotechnical Investigation

PLATE 1: BERG RIVER WEIR SITE

Possible centreline runs from the area of erosion on the left of the plate through the large green gum tree against the darker green pine trees on the right of the plate. Note the bedrock exposed to the right of the puddle of water in the right, central, lower part of the plate.

a layered deposit of medium brown, fine sand which is slightly silty in places and locally contains fine to medium, sub rounded sandstone gravel. The sands become coarser with depth. The thickness of the sandy alluvium ranged up to 5.5m in the boreholes.

The patches of the alluvium in the western part of the river channel also apparently comprise mainly fine sand.

• The sands are underlain by gravelly alluvium comprising fine to coarse, sub rounded sandstone gravel probably in a fine to coarse sandy matrix. The proportion of matrix to clasts is unknown but probably varies both vertically and laterally within the deposit. The thickness of the gravelly layer varies from approximately 3m (BH 1 to BH 3) to possibly 2m below the river (BH 4A), but 1.5m or less in BH 6 and BH 7 and nil in BH 5.

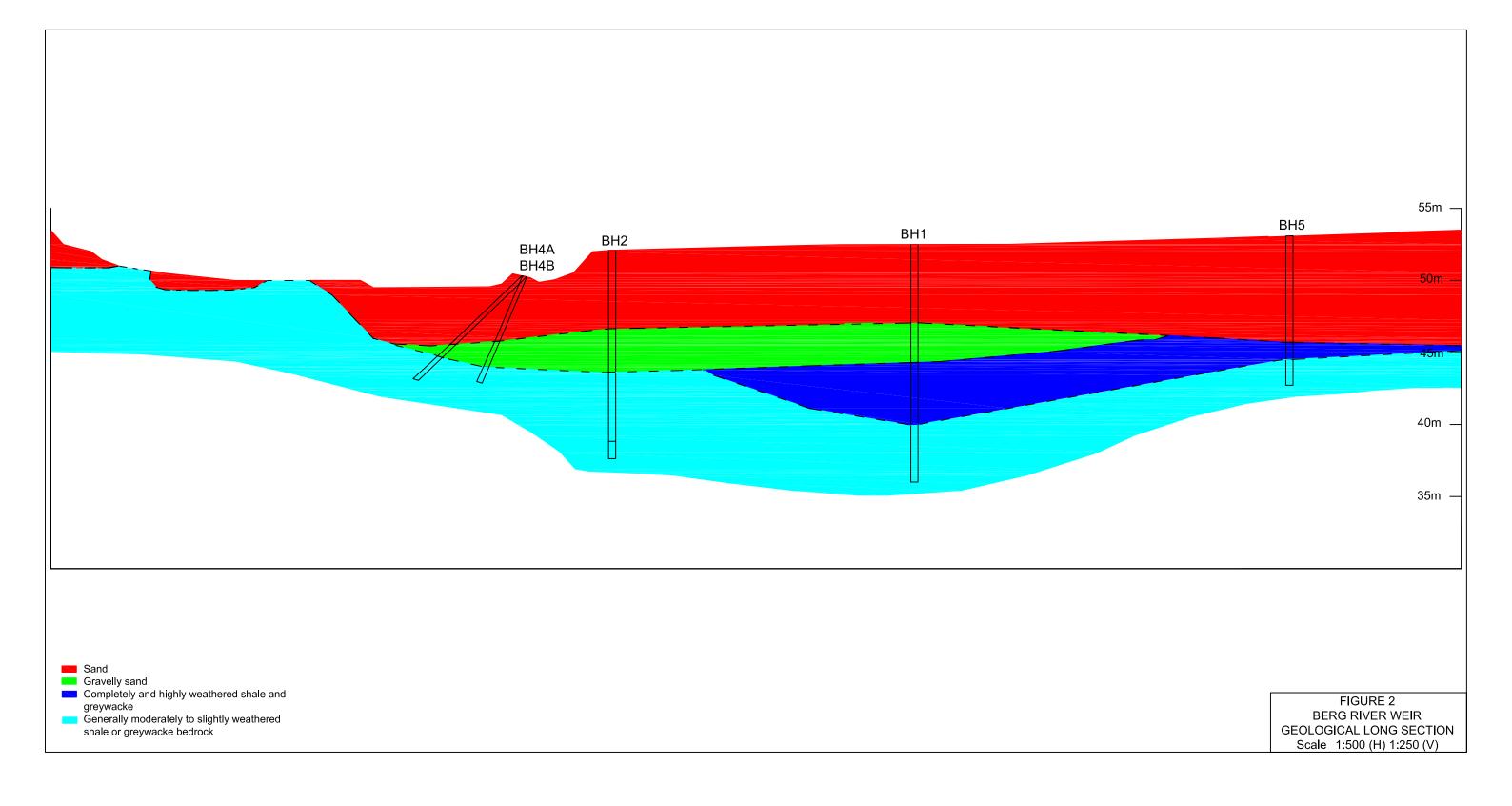
The distribution of the alluvium along a centreline is shown on Figure 2. The contact between the alluvium and the bedrock lies at elevations of approximately 44m under the right river bank and the 'summer' river channel (i.e. the eastern approximately 15m of the river channel), rising to 47m to nearly 46m eastwards under the vineyard. The outcrop in the western part of the river channel is located at an elevation of approximately 49m and there is therefore a 4m step or very steep contact between the alluvium and the bedrock on the western edge of the 'summer' river channel.

Scattered thin occurrences of sandy alluvium occur between and next to the outcrop in the western half of the river channel. No significant occurrence of alluvium was observed on the lower left flank.

<u>Bedrock</u>

The bedrock comprises weathered shales and greywacke of the Porterville Formation.

The bedrock on the upper left flank is highly weathered, but no investigations were conducted in this area and the precise nature and distribution of this rock mass are unknown.


The rock outcrop in the western part of the river channel comprises moderately to slightly weathered, medium hard to hard, highly fractured shale and greywacke. More weathered areas occur locally. A sub vertical schistosity or foliation strikes just west of north.

This relatively unweathered rock mass apparently extends below the river and to an undetermined distance from BH 2 towards BH 1, beyond (east) of which the contact zone of the bedrock is more weathered with highly weathered rock grading, in places, to a soil-like completely weathered condition, particularly in the contact zone. The interpreted distribution of the more weathered rock is illustrated on Figure 2.

5.2.3 Geotechnical Assessment of the Weir Site

5.2.3.1 The Left Flank and the River Section

Assuming the conceptual arrangement discussed in Section 5.2.1 is adopted, it is apparent from Figures 1 and 2 that the western part of the spillway structure could be founded on moderately to slightly weathered bedrock which occurs at approximately 49m elevation. Only nominal thicknesses of mainly sandy alluvium currently occur above this bedrock, but the distribution of the alluvium will change seasonally after each winter flood.

Weathered, very low and low strength rock occurs on the left flank, but the precise nature and distribution has not been determined.

Current information suggests that there is a step in the bedrock profile or a stepped or a very steep profile along the western edge of the 'summer' river channel and that bedrock only occurs below approximately 44m elevation in this channel, a step or change in level of some 4m.

The degree of weathering of the rock in the upper contact zone of the bedrock is apparently variable with a slightly to a borderline unweathered rock recorded in BH 4B, highly to moderately weathered in BH 4 A, and moderately to slightly weathered in BH 2.

The elevation of the bedrock apparently remains relatively constant between the step and BH 2 and to the east of BH 2, and the spillway structure could be founded at depths from approximately 0.5m below the alluvium/bedrock contact.

No water pressure testing was undertaken but, aside from the contact zone which might be more permeable, outcrop and borehole evidence suggested that the rock mass is relatively impermeable. In any event, seepage losses are not problematic particularly as erosion of the bedrock is unlikely.

5.2.3.2 Right Flank

The right flank is defined as that section of the weir structure or its centreline which extends eastwards from BH 2 to the higher ground (\pm 54.5m) just to the east of the existing vineyard.

This area is underlain by between approximately 5.5m and 7.5m of sandy alluvium, with gravely alluvium extending at least an additional 3m apparently only in the western half. The alluvium is underlain, at least in the vicinity of BH 1, by at least 4m (BH 1) of completely to highly weathered rock which is generally soil-like.

With the weathered rock or soil-like completely weathered rock approximately 8m below current ground levels, and only significant floods creating water levels above existing ground level over most of the right flank, it is unlikely that a substantial concrete structure would be constructed in this area. If an extension of the weir structure is required in this area, an embankment type structure would be more appropriate than a concrete structure.

The principal engineering concerns for an embankment will probably be erosion either by overtopping of an embankment structure or piping through or below the embankment.

The sandy soils would probably be classified as SP materials and the gravelly soils as GP equivalents. These soils are pervious and vulnerable to erosion and they would not be suitable for core material or for an effectively impervious homogeneous embankment. They could be marginally suitable for shell material provided that they are protected against rainwater and wave erosion.

Overtopping could be prevented by appropriate design with respect to flood levels. Piping erosion could be prevented by constructing a core with an appropriate depth of cut-off trench and consideration during the preliminary design should be given to the possible use of sheet piling or a diaphragm wall.

Specific attention should be given to the design of the junction between the eastern end of the concrete spillway structure and the adjacent embankment, particularly as gravelly soils occur at

depth and seepage-induced erosion could occur around the concrete structure if seepage flow lengths are too short.

5.2.3.3 Pump Station

The layout, size and location of the pump station have also not yet been determined, but based on conceptual designs, the station would be located on the left bank close to the weir.

The sloping ground in this area comprises thin transported soils over weathered bedrock with local outcrops of the relatively unweathered rock, but, based on the information from TP VV 10, thicker clayey soils occur at approximately the same elevation and some 50m upstream from the weir where the ground slopes less steeply.

From the above descriptions, it is apparent that the pump station would be located in cut or on a cut and fill platform.

Excavation conditions will be difficult if areas of relatively massive and unweathered rock occur, but founding conditions would be good in in-situ ground. However, founding the structure partly on insitu ground and partly on fill could be problematic and the pump station site should preferably be located on flatter ground slightly upstream from the weir.

5.3 Berg River to Voëlvlei Pipeline

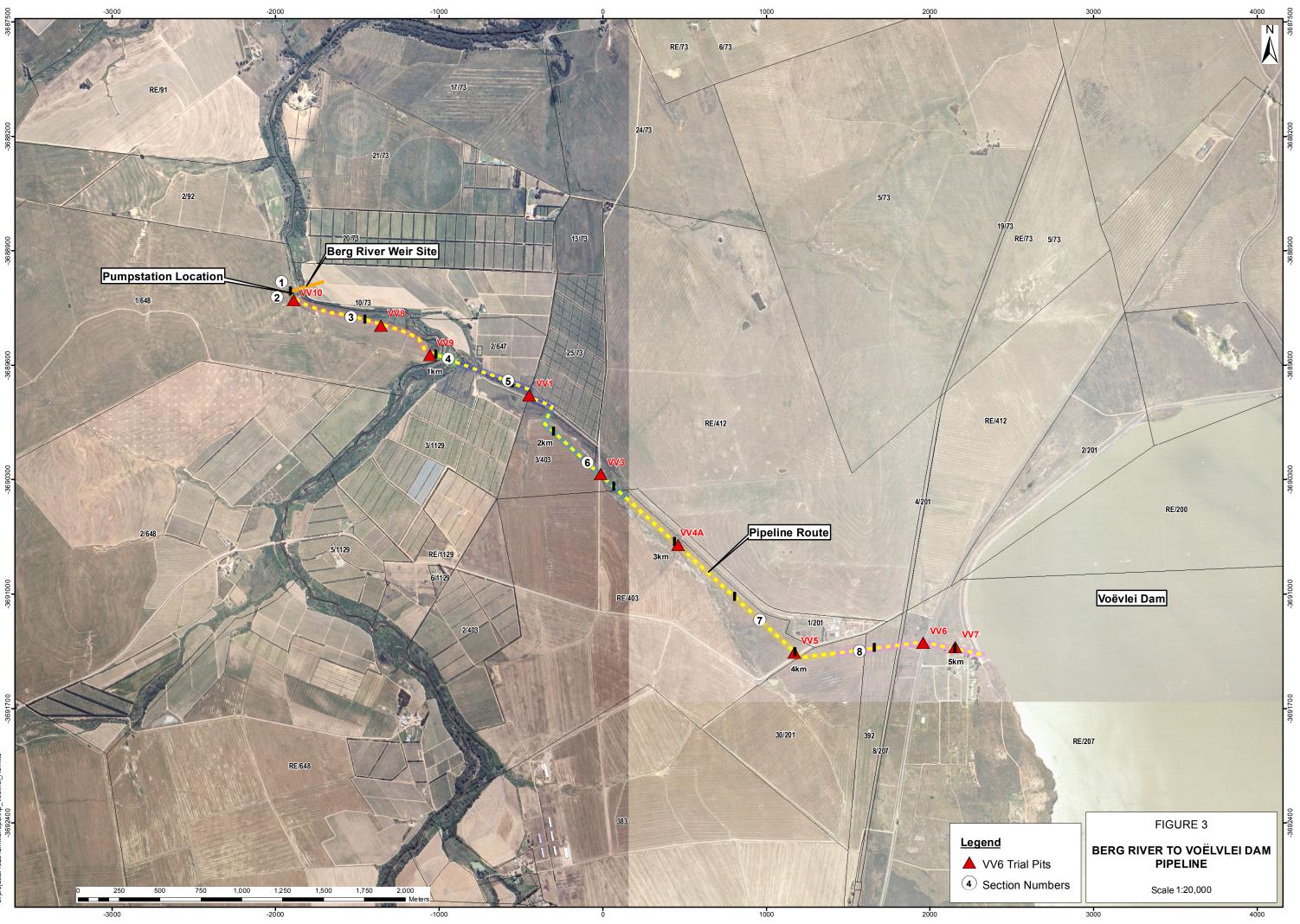
5.3.1 The Pipeline Structure

The pipeline route shown on Figure 3 is approximately 5km long.

Glass fibre reinforced pipes (GRP) will probably be used and laid at a depth between 3m and 3.5m.

5.3.2 Geotechnical Assessment of the Pipeline Route

The significant geotechnical factors in assessing construction conditions and costs for the pipeline will include excavation conditions, stability of the sidewalls of the pipe trenches, groundwater conditions, use of excavated materials for pipe bedding and backfill and engineering properties of the backfill.


Because the trial pits were so widely spaced, conditions along the pipeline route shown on Figure 3 cannot be discussed in detail. However, for the purposes of supporting the preliminary design during the feasibility study, the objective was to sub-divide the pipeline route into regions or sections in which the soil profile and therefore the geotechnical conditions are broadly similar. Eight such regions have been identified.

The anticipated soil profile along the sections of the route together with the interpreted construction conditions and material usage are summarised in Table 1.

5.3.2.1 Anticipated Soil and Rock Profiles

From Table 1, the anticipated soil and rock profiles along the route can be summarised as follows:

• Section 1 (pump station to 0.05km): Thin transported soils mask relatively unweathered Malmesbury bedrock.

TABLE 1: BERG RIVER TO VOËLVLEI PIPELINE - SUMMARY OF GROUND AND CONSTRUCTION CONDITIONS AND MATERIAL USAGE

Section	Anticipated Soil Profile (*)	Groundwater Presence	Excavation Conditions	Stability of trench (**)	Potential Use of Materials (**)			
				()	Soil type	SGM	SF	MF
1 Pump Station to	Very thin clayey silty sand over relatively unweathered Malmesbury rock	No	Some Soft but generally Intermediate with	Soils at 1:1.5, bedrock at	Sandy soils	х	\checkmark	\checkmark
0.05km	· · · · · · · · · · · · · · · · · · ·		possible local Hard	1:0.5	Rock	Х	х	(√)
2 0.05km to	Clayey silty sand over weathered Malmesbury rock	No	Soft with some	Soils at 1:1.5, bedrock at	Cl sandy Soils	Х	х	\checkmark
0.1km	(VV10)	-	depth	1:0.5	Rock	Х	Х	
3 0.1km to 1km	Silty sandy, clayey silty sandy and possibly gravelly sandy alluvium to >3m depth (VV8 & VV9)	Possible at depth, particularly near the river	Soft	Soils at 1:1.5	Sandy soils	\checkmark	\checkmark	\checkmark
4 1.0km to	Berg River Crossing. Sandy and gravelly alluvium. Depth to and nature of bedrock	Yes. Plus river	Soft, possibly with Intermediate or Hard at depth if	Dewatered soils at 1:1.5,	Sandy soils	\checkmark	\checkmark	\checkmark
1.15km	unknown.	diversion required.	bedrock encountered	bedrock at 1:0.5	Rock	x	x	(√)
5 1.15km to	Silty sand, clayey silty sand and possibly minor sandy clayey silt at depth. Route	Yes, in places, particularly near drainage sources and	Soft possibly with local Intermediate at	Soils at 1:1.5	Sandy soils	\checkmark	\checkmark	\checkmark
1.8km	crosses existing canal and drainage course. (VV1)	river. Possible seasonally influenced inflow.	depth	0013 at 1.1.0	Silty soils	x	х	\checkmark
6 1.8km to	Thin silty sand over completely grading to highly to moderately weathered Malmesbury rock with depth. Pipeline crosses seasonal	Generally no, but seasonal, perched	Assumed approximately 75% soft and 25%	Soils at 1:1.5, bedrock at	Sandy soils		\checkmark	\checkmark
2.6km	stream near 1.9km and 2.5km. (VV3)	occurrences possible.	Intermediate, but local Hard possible.	1:0.5	Rock	x	х	\checkmark

* Trial pits in each section are noted. ** See qualifications in text. All distances approximate. SGM = selected granular material SF = selected fill MF = main fill

TABLE 1 (CONT): BERG RIVER TO VOËLVLEI PIPELINE - SUMMARY OF GROUND AND CONSTRUCTION CONDITIONS AND MATERIALUSAGE

Section	Anticipated Soil Profile (*)	Groundwater Presence	Excavation Conditions	Stability of trench (**)	Potential Use of Materials (**)			
					Soil type	SGM	SF	MF
	Thin silty sands over sandy clayey silt with and without gravel and gravelly clayey silty sand over highly to generally moderately weathered bedrock at depth. (VV4A and VV5)	Generally no, but seasonal occurrences possible.	Assumed 90% soft and 10% Intermediate but very slight possibility of Hard locally at depth.	Soils at 1:1.5, bedrock at 1:0.5.	Sandy soils	\checkmark	\checkmark	\checkmark
7 2.6km to 4.2km					Silty soils	х	х	(√)
					Rock	х	х	\checkmark
0	Thick clayey silty sand over clayey silty gravelly sand and gravelly sandy clayey silt at		Generally soft but		Sandy soils	\checkmark	\checkmark	\checkmark
8 4.2km to Voëlvlei dam	depth. Possibly Malmesbury bedrock in base of trench, in places. Route crosses the R44	Possibility of seasonal perched groundwater, generally at depth.	probable Intermediate or Hard near Voëlvlei Dam.	Soils at 1:1.5, bedrock at 1:0.5.	Silty soils	х	х	(√)
	at 4.8km (VV 6 and VV 7)				Rock	х	х	

* Trial pits in each section are noted. ** See qualifications in text. All distances approximate. SGM = selected granular material SF = selected fill MF = main fill

- Section 2 (0.05km to 0.1km): Clayey soils overlying weathered Malmesbury rock.
- Section 3 (0.1km to 1km): The alluvial plain of the Berg River extends into a broad strip along the left bank and the soil profile comprises mainly alluvial, slightly silty sands and minor clayey sands and local gravel lenses or layers. Bedrock generally occurs below 3m depth except possible in the extreme western end of this section.
- Section 4 (1km to 1.15km the Berg River crossing): The soil profile and depth to bedrock where the pipeline passes below the Berg River are unknown. Sandy alluvium is expected, but the depth of bedrock is critical because it would affect excavation conditions and program.
- Section 5 (1.15km to 1.8km): Aluvium associated with the Berg River and alluvial wash associated with the drainage course/seasonal stream, which extends from southwest of TP VV 5 to near the crossing point, extends to the east of the river. The existing canal and the seasonal stream must be crossed. Bedrock might be encountered at depths where the stream has eroded the alluvium and locally lowered ground levels.
- Section 6 (1.8km to 2.6km): The weathered bedrock apparently occurs at shallow depth and the route re-crosses the seasonal stream and an associated seepage area in the vicinity of 1.9km and 2.5km.
- Section 7 (2.6km to 4.2km): Clay and gravelly alluvium occurs with highly to moderately weathered Malmesbury bedrock towards 3m depth. Rapid transition to less weathered, more massive bedrock might occur, in places.
- Section 8 (4.2km to Voëlvlei dam): The final section of the route apparently traverses deeply developed alluvial clayey silty sand with more clayey and locally gravelly soils at depth. Bedrock might occur at shallow depth in close vicinity to the Voëlvlei Dam wall.

5.3.2.2 Groundwater

Table 1 indicates that groundwater might be prevalent at depths in the alluvium to the west and immediately to the east of the Berg River.

Seasonal or local occurrences might occur throughout the sections of pipeline east of the river.

Groundwater will adversely affect excavation conditions, stability of the excavated slopes in the trenches, and pumping and possibly local dewatering will be required.

5.3.2.3 Excavation Conditions

Table 1 also indicates that machine excavation of the pipe trench is generally expected with high proportions of Soft Excavation Class according to SABS 1200 D.

Hard Excavation Class cannot be excluded in some areas, specifically in the area of the pump station and at depths in Sections 5 and 6. Some Hard Excavation Class might also be encountered near Voëlvlei Dam.

Precise quantification of the excavation types is not possible at greater confidence levels (nor considered necessary for supporting preliminary design), because the trial pits for this feasibility study are spaced too far apart to allow detailed extrapolation of excavation conditions.

5.3.2.4 Stability of Excavated Slopes in the Pipe Trench

With few exceptions, cohesionless or near cohesionless soils will occur it in the excavated profile and slope batters must reflect the low shear strength of these soils.

In Table 1, a batter of 1:1.5 has been considered appropriate for temporary cut slopes in soils, and 1:0.5 in bedrock.

Where groundwater occurs, batters at 1:1.5 will not be stable and combinations of dewatering, slope flattening and provision of supplementary measures such as sandbagging will be required to ensure safe working conditions.

The foliation in the bedrock generally strikes just west of north and the dip is generally sub vertical. Those short sections of trench, which are orientated near north-south, will therefore be excavated sub parallel to the strike of the predominant discontinuity in the rock mass. Flatter batters might be required to ensure stability in these areas.

5.3.2.5 Potential Use of Excavated Material

Based on the results of the trial pitting, five generalised soil groups can be identified. The generalised soil groups together with their basic engineering properties (grading and Atterberg Limits) are described below:

• Silty sand and clayey silty sandy alluvium and gravelly varieties of these soils: These soils predominate in Sections 3, 4, 5 and 8 and they are thinly, developed to shallow depth in Sections 2, 6 and 7.

Most of these soils contain 30% or more of fines (material finer than 0.075 mm) and they would be classified as SC or SP soils. The sandy soils with the smallest fines content apparently occur in Section 3 and parts of Section 5 and they are commonly non plastic or slightly plastic, but plastic sandy soils also occur. They are classed as SP, SM, SM-SC and locally as SC soils.

The sands in Section 8 contain fines contents of approximately 40% or more and they have plasticity indices greater than 15. They are classed as SC soils.

• Sandy clayey silty alluvium and gravelly varieties of these soils: These alluvial soils are apparently predominantly developed in Section 7, but they occur as minor components in other sections, commonly at depth, but also at surface in Section 2.

Based on samples from TP VV 4A and VV 5, the more clayey soils are CH materials with fines contents of 69% and 66% and plasticity indices of 26 and 36.

The clayey soils in VV 10 in Section 2 had a fines content of 56% and a plasticity index of 12 and it is classed as a SC material.

- Silty sandy gravelly alluvium and clayey varieties of this soil: These soils were also encountered in Section 7 and at depth in Section 8. Only the thin clayey sandy gravel in VV 5 was sampled. This soil had a plasticity index of 2, a fines content of 3% and approximately 20% of the soil was coarser than 10mm, but the representativeness of the coarser fraction is uncertain.
- **Gravelly clayey silt:** This residual Malmesbury soil was encountered in TP VV 3 in Section 6 and it probably occurs locally elsewhere, particularly in Section 7. The gravel content comprises highly to moderately weathered, remnant fragments of rock. The sample from VV 3 had a fines content of 39% and a plasticity index of 17%.
- Shale and greywacke bedrock: These rocks are commonly light to medium brown but pinkish orange brown in VV 3 and they are highly to moderately weathered. The rock strength commonly varies from very soft to soft, but medium hard to hard rock was also encountered. The upper portion of the bedrock is highly fractured and therefore excavates as a medium to coarse, angular gravel with a clayey silty matrix.

These rocks will form a predominant part of the excavation in Section 1, where they might be less weathered than indicated above, and they will be present in Sections 6 and 7.

A sample from VV 3 had a fines content of 53% and a plasticity index of 9. However, the grading of the excavated soils will vary depending on their degree of weathering and fracturing and, to some extent, the excavation method. The material excavated from the trial pits generally presented as a gravelly soil with some fines.

Based on the results of limited pitting and laboratory testing and the assessments above, the potential use of excavated material for selected granular material, selected fill and main fill are summarised in Table 1 for each general soil type in each section of the pipeline route.

The following qualifications and notes are relevant to the tabulation:

- In most sections, several soil types and, in places rock occur. Unless selective excavation is undertaken, all material types will be mixed. The resulting mixture would probably only be suitable for main fill.
- Where the soils occur, for example in Section 6, the specific potential usage indicated in Table 1 therefore assumes selective excavation, stockpiling and use of the thinly developed soils.
- The more cohesive soils, the hard rock and mixtures of cohesive and sandy soils and cohesive soils and rock will only provide a relatively poor quality main fill.
- Similarly, main fill comprising only cohesive soils will be of poor quality or unacceptable and main fill comprising only relatively unweathered rock will be unacceptable.
- With respect to the quality of the main fill, the route generally traverses farmland where backfill requirements can possibly be relaxed slightly given that local small settlement of the fill is unlikely to affect local operations. However, the main fill should be of adequate quality to prevent ingress of water and piping of the sidewalls of the trench or the bedding material.

• The symbols in parenthesis indicate marginal potential for use.

From Table 1, it is apparent that the sandy soils in Sections 3, 4 and 8 are potentially the most suitable source of selected granular material. However, it is noted that these soils contain fines and that their compactibility factors are unlikely to be less than 0.4. These soils are effectively cohesionless and relatively free draining and with additional investigation and testing and relaxation of the requirements of SABS 1200 LB, they could be considered for selected granular material.

Precise quantification of the volumes of soil suitable for selected granular material, selected fill and main fill is not possible because the trial pits for this feasibility study are too far apart to allow detailed extrapolation of soil distributions.

6. MICHELL'S PASS WEIR AND MICHELL'S PASS PIPELINE - SCHEME B

This section of the report presents similar information and assessments to that for the Berg River weir and pipeline (Section 5) and this section can generally be read as a stand-alone assessment of Scheme B with limited cross reference to Section 5.

The qualifications regarding spacing of the trial pits and interpretation of intervening ground conditions that were discussed for Scheme A are also relevant to Scheme B.

6.1 Geology and Geomorphology

The 1:250 000 Geological Series Map, 3319 Worcester, indicates that the area investigated for Scheme B is also underlain by the shales and siltstones of the Porterville Formation of the Malmesbury Group that are masked by alluvial deposits of Quaternary Age.

The Breede River has also strongly influenced the geomorphological development of the eastern and central parts of the study area.

On exiting the gorge-like valley below the R44 in Michell's Pass, the Breede River has meandered and deposited coarse alluvium over an area which extends northwards from the current position of the river to a broad line which runs near the R44 in the east and diverges some 300m south of the road in the west. This fan-like deposit extends below the southern parts of Wolseley.

The ground along the pipeline route runs immediately east of Wolseley then rises above the main Breede River valley. Normal geomorphological and erosional development has resulted in rolling topography, with thinly developed transported and residual soils and weathered rock at shallow depth.

The Blousloot and Boontjies Rivers are the results of a superimposed drainage system and they have localised, associated development of alluvial deposits.

6.2 The Proposed Michell's Pass Weir

6.2.1 The Weir Structure

No details of the dimensions, levels, nature or precise position of this structure have been provided and only general comments can therefore be given. However, the weir, which will be a concrete structure, will be located in close vicinity to the existing DWA weir (H1H006), just upstream from the bridge on the R43 over the Breede River.

A view of the existing Michell's Pass weir (DWA weir H1H006) is illustrated on Plate 2.

6.2.2 Geology of the Weir Site

Based on the results of previous drilling undertaken prior to the bridge design, the indication from assessment of that information is that bedrock might occur approximately 4m below the river level. Based on these results, the interpretation is that bedrock is expected to comprise relatively unweathered and medium fractured sandstone which would provide suitable founding for the weir.

6.2.3 Geotechnical Assessment of the Weir Site

Factors to be considered in the design and construction of the weir include the occurrence of the existing concrete weir structure and the existing inlet structure for the Artois irrigation canal which runs towards Wolseley on the left bank. Both will be impacted by the construction of new works. River diversion would be required during construction and and uninterrupted water supply to the Artois irrigators maintained. Construction in the dry summer months would be necessary.

Weirs are conventionally founded on bedrock, although they could be founded on dense alluvium provided that erosion and seepage losses are not factors. In the case of this weir, seepage is of no concern and the focus will be on ensuring that suitable erosion protection measures are allowed for.

Trial pit MP 1 did not expose bedrock and the actual depth to it and its quality are unknown. To qualify this would require substantially more intensive and costly investigations (core drilling). The JV did not consider that it was necessary to motivate for additional funding from DWA to undertake such drilling. This due to the fact that:

- this is a low weir structure (at an existing weir location),
- it need not be a watertight structure, and
- previous geotechnical investigations at the nearby bridge have been undertaken...

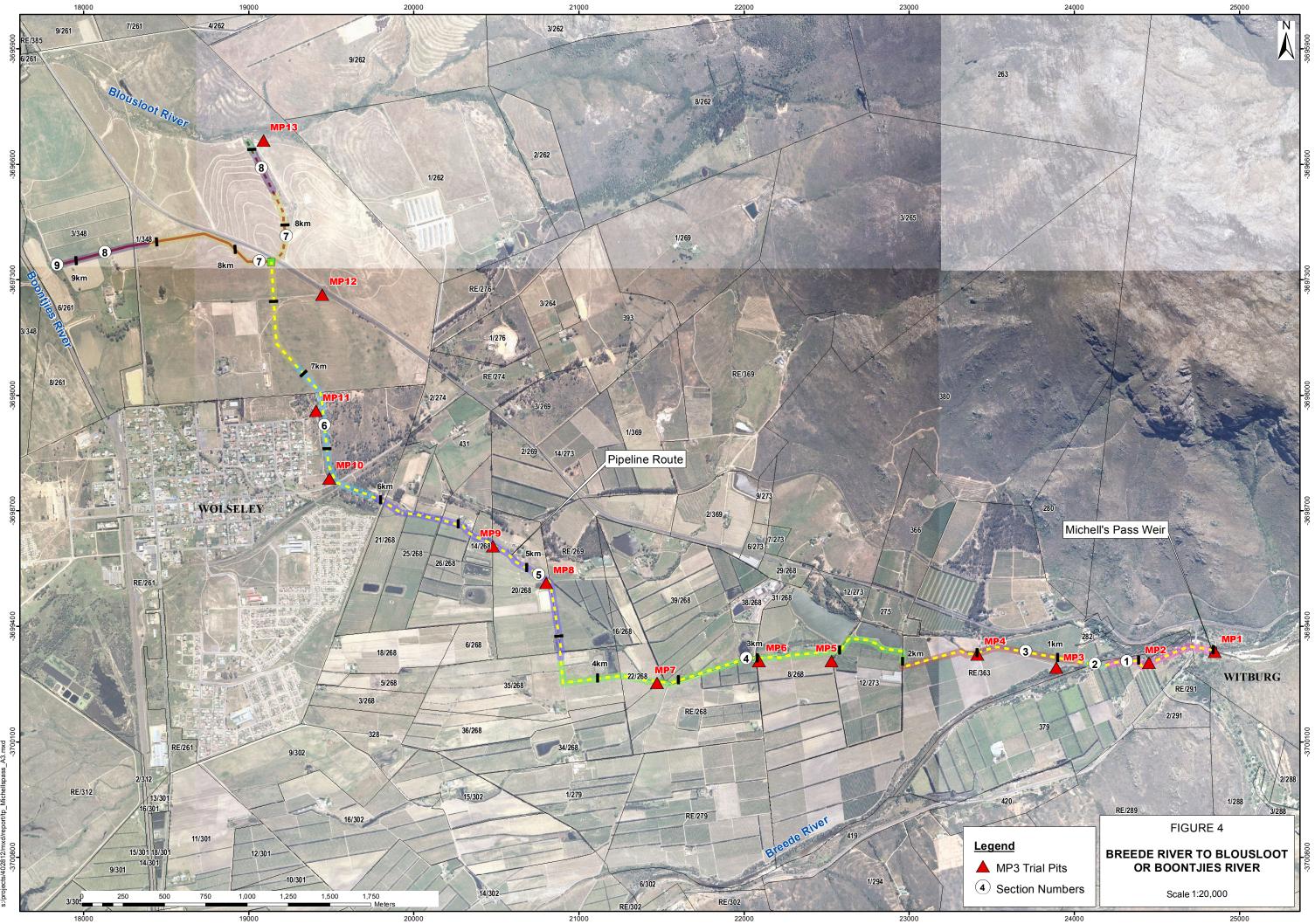
6.3 Michell's Pass Pipeline

6.3.1 The Pipeline Structure

The pipeline route shown on Figure 4 comprises two alternatives with the pipeline either discharging into the Blousloot River (pipeline length of 8.6km) or into the Boontjies River (9.3km pipeline).

Glass fibre reinforced pipes (GRP) will probably be used and laid at a depth between 3m and 3.5m.

6.3.2 Geotechnical Assessment of the Pipeline Route


The significant geotechnical factors in assessing construction conditions and costs for the pipeline will again include excavation conditions, stability of the sidewalls of the pipe trenches, groundwater conditions, use of excavated materials for pipe bedding and backfill, and engineering properties of the backfill.

The anticipated soil profile along the sections of the route together with the interpreted construction conditions and material usage are summarised in Table 2.

PLATE 2: MICHELL'S PASS WEIR SITE

Note the existing inlet structure for the Artois irrigation canal in the foreground of the plate

ЪЗ

TABLE 2: MICHELL'S PASS PIPELINE - SUMMARY OF GROUND AND CONSTRUCTION CONDITIONS AND MATERIAL USAGE

Section 1 Michell's Pass Weir to 0.7km 2 0.7km to 0.8km Siphon below	Anticipated Soil Profile (*)	Groundwater	Excavation	Stability of trench	Potential Use of Materials (**)			
		Presence	Conditions	(**)	Soil type	SGM	SF	MF
1 Michell's Pass	Combinations of gravelly sand, sandy gravel and apparently minor clayey sandy gravel with various quantities of small boulders. This alluvium is thicker than 3.5m and possibly	Yes at depth and at shallow depth near the	Soft/Intermediate with very local areas	Dewatered	Fine alluvium	\checkmark	\checkmark	\checkmark
Weir to 0.7km	coarser near the current Breede River course. (MP1 and MP2)	river.	of Boulder Class A	soils at 1:1.5	Coarse alluvium	× √	x	(√)
0.7km to	Inverted siphon below Breede River. Coarse alluvium over sandstone bedrock. Depth to	Yes plus river diversion	Soft/Intermediate with very local areas of Boulder Class A.	Dewatered soils at 1:1.5.	Fine alluvium	\checkmark	\checkmark	\checkmark
	bedrock unknown.	required.	Hard at depth if bedrock encountered	Bedrock at 1:0.5.	Coarse alluvium	x	x	(√)
3 0.8km to	Similar soils to those expected in Section 1	Yes at depth and possibly locally	Soft/Intermediate with very local areas	Dewatered	Fine alluvium	\checkmark	\checkmark	\checkmark
2km	(MP3 and MP 4)	seasonally perched at shallow depth.	of Boulder Class A	soils at 1:1.5	Coarse alluvium	x	x	(√)
4 2km to	Silty sand and sandy alluvium overlying sandy gravel and some gravelly sand with	Yes at depth and possibly locally	Soft/Intermediate	Dewatered	Fine alluvium	\checkmark	\checkmark	\checkmark
4.35km	various quantities of small boulders. (MP5 to MP7)	seasonally perched at shallow depth.	with very local areas of Boulder Class A	soils at 1:1.5	Coarse alluvium	х	х	(√)
5 4.35km to 6km	Generally finer alluvium comprising sand and also areas with clayey sand and sandy clay	Yes	Soft	Dewatered soils at 1:1.5	Fine sandy alluvium	\checkmark	\checkmark	\checkmark
	and local occurrences of clayey coarse alluvium.				Fine clayey alluvium	x	x	(√)
	(MP8 and MP9)				Coarse alluvium	х	Х	(√)

* Trial pits in each section are noted. ** See qualifications in text. All distances approximate. SGM = selected granular material SF = selected fill MF = main fill

TABLE 2 (CONT): MICHELL'S PASS PIPELINE - SUMMARY OF GROUND AND CONSTRUCTION CONDITIONS AND MATERIAL USAGE

Section	Anticipated Soil Profile (*)	Groundwater Presence	Excavation Conditions	Stability of trench (**)	Potential Use of Materials (**)			
					Soil type	SGM	SF	MF
6 6km to	Thin sandy transported soils with basal development of ferricrete and other scattered	No but local winter	Soft possibly with local Intermediate at	Transported soils at 1:1.5,	Transp soil	х	х	(√)
7.1km	gravel overlying siltstone and shale bedrock. (MP10 and MP11)	seepage at transported soil/residual contact.	ct. depth Soft in transported soils and generally	bedrock at 1:0.5.	Weath rock	х	х	\checkmark
7	weathered, more massive bedrock expected at shallower depth. (MP12) No but local winter seepage at transported Intermediate in			Transported	Transp soil	х	х	(√)
7.1km to 8.2km (to Blousloot River)		soils at 1:1.5, bedrock at	Weath rock	х	х	\checkmark		
or to 8.65km (to Boontjies River)		soil/residual contact. bedrock but H	expected in places	1:0.5.	Rock	х	х	(√)
8 8.2km to 8.5km (to Blousloot	Soil profile probably as per Section 6.	No but local winter	Soft possibly with local Intermediate at depth	Transported soils at 1:1.5, bedrock at 1:0.5.	Transp soil	х	x	(√)
River) or 8.65km to 9.1km(to Boontjies River)		seepage at transported soil/residual contact.			Weath rock	х	x	\checkmark
9	Alluvial wash sands, silty sands and basal				Fine alluvium	\checkmark	\checkmark	\checkmark
8.5km to 8.6km (to Blousloot River) or 9.1km	clayey sandy gravel with weathered bedrock probably occurring at southern or eastern ends of sections.	Possible close to the river.	Soft with possible minor Intermediate in bedrock	Soils at 1:1.5.	Coarse alluvium	х	х	(√)
to 9.3km(to Boontjies River)	(MP13)				Weath. rock	х	х	(√)

* Trial pits in each section are noted. ** See qualifications in text. All distances approximate. SGM = selected granular material SF = selected fill MF = main fill

6.3.2.1 Anticipated Soil and Rock Profiles

From Table 2, the anticipated soil and rock profiles along the route can be summarised as follows:

- Section 1 (weir site to 0.7km): Combinations of fine and coarse alluvium with thicker and possibly coarser alluvium near the river. Because the river has meandered, multiple combinations of sandy, gravelly and bouldery alluvial soil types are possible.
- Section 2 (0.7km to 0.8km the Breede River crossing: The soil profile and depth to bedrock where the pipeline passes below the Breede River are unknown. Coarse alluvium is expected, but the depth to bedrock is critical because it would affect excavation conditions and construction program.
- Section 3 (0.8km to 2km): Similar soils to those expected in Section 1 are also expected in this section.
- Section 4 (2km to 4.35km): Finer alluvium (silty sand and sand) overlie coarser alluvium.
- Section 5 (4.35km to 6km): This section is located towards the northern limits of the alluvial fan and generally finer alluvium with areas of more clayey alluvium is expected.
- Section 6 (6km to 7.1km): Thin transported soils overlie thinly developed ferricrete and gravel overlying weathered Malmesbury bedrock.
- Section 7 (7.1km to various km distances depending on the adopted branch of the pipeline route): The soil profile is expected to be similar to that in Section 6, but less weathered or more massive bedrock is expected at shallower depth.
- Section 8: The soil profile is expected to be similar to that in Section 6.
- Section 9: These sections occur adjacent to the Blousloot and Boontjies Rivers and therefore generally fine alluvial soils are expected with the weathered bedrock occurring at depth particularly in the upslope portions of this section.

6.3.2.2 Groundwater

Table 2 indicates that groundwater will probably be present, generally at depth, but possibly also locally at shallow depth, in the alluvium in Sections 1 to 5. It might also be present in the alluvium in Section 9. Local, seasonal perched water might occur in Sections 6 to 8.

The alluvium in the Breede River alluvium (Sections 1 to 6) is commonly coarse and it will have high permeabilities. The quantity of groundwater inflow could therefore be significant.

Groundwater will adversely affect excavation conditions, stability of the excavated slopes in the trenches, and pumping and possibly local de-watering will be required.

6.3.2.3 Excavation Conditions

Table 2 also indicates that machine excavation of the pipe trench is generally expected.

High proportions of Soft and possibly Intermediate Excavation Class (SABS 1200 D) are expected in Sections 1 to 4 where coarser alluvium occurs. The use of an Intermediate classification would be

dependent on the efficiency of excavation because the experience during site investigations was that, although the alluvium could be excavated, continuous instability in the trench meant that slow and additional excavation was required.

Intermediate excavation is expected in Sections 6 to 8 in the Malmesbury bedrock and some Hard Excavation Class cannot be excluded in some areas, particularly in Section 7.

Hard excavation might also be encountered in the pipe trench below the Breede River if bedrock is encountered.

Precise quantification of the excavation types is not possible because the trial pits for this feasibility study are too far apart to allow detailed extrapolation of excavation conditions.

6.3.2.4 Stability of Excavated Slopes in the Pipe Trench

With few exceptions, cohesionless or near cohesionless soils will occur in the excavated profile in Sections 1 to 5 and 8 and slope batters must reflect the low shear strength of these soils. This is particularly relevant because groundwater is expected in the trenches in these sections and this will adversely influence stability.

In Table 2, a batter of 1:1.5 has been considered appropriate for temporary cut slopes in soils, and 1:0.5 in bedrock.

Where groundwater occurs, batters at 1:1.5 will not be stable and combinations of dewatering, slope flattening and provision of supplementary measures such as sandbagging will be required to ensure safe working conditions.

The foliation in the bedrock generally strikes just west of north and the dip is generally sub vertical. The trench in Section 6, 7 and 8 is orientated near north-south and it will therefore be excavated sub parallel to the strike of the predominant discontinuity in the rock mass. Flatter batters might be required to ensure stability in these areas.

6.3.2.5 Potential Use of Excavated Material

Based on the results of the trial pitting, the types of excavated materials can be subdivided or categorised into three generalised soil groups. The generalised soil groups together with their basic engineering properties (grading and Atterberg Limits) are described below:

• Fine and mainly coarse alluvium: These soils predominate in Sections 1 to 4 and locally in Section 5. The coarse content (gravel and boulders) is variable and boulders up to 700mm maximum diameter were encountered in some pits, but larger boulders might occur in the intervening areas of the trench.

Sampling to obtain representative grading of the entire soil mass was not practical and generally only the matrix soils were sampled and tested.

Samples from MP 2 to MP 7 had fines contents (material finer than 0.075mm) ranging from 1% to 23% and, with the exception of the sample from MP 5 which was slightly plastic, all other soils were non-plastic. The coarse soils would be variously classified as GW, GP and GM soils with local sandy equivalents.

• Mainly fine alluvium: These soils occur in Sections 5 and 9, and to some extent in the upper profile at the western end of Section 4.

Samples from MP 8 had a fines content of 29% with a plasticity index of 10, and 61% fines and a plasticity index of 22 at depth. In contrast, the sandy soil from MP 9 had 14% fines and it was non-plastic.

The sample from the upper soil profile in the alluvial soils in MP 13 next to the Blousloot River had 18% fines and it was non-plastic. The more cohesive soil at depth had 30% fines and it was slightly plastic.

The soils in this section would therefore be classified as SP, SC and possibly SM-SC materials, with local gravelly equivalents possible.

• Thin soils over weathered Malmesbury: This profile occurs in Sections 6, 7 and 8.

The samples of weathered Malmesbury from MP 10, MP 11 and MP 12 had fines contents varying from 47% to 85% and plasticity indices from 3 to 11. Although the weathered Malmesbury rock would be classified as ML or ML-CL material based solely on laboratory results, it will excavate, in most places, as a gravelly material which would be coarser or finer depending on the degree of weathering and fracturing of the rock mass.

Based on the results of limited pitting and laboratory testing and the assessments above, the potential use of excavated material for selected granular material, selected fill and main fill are summarised in Table 2 for each general soil type in each section of the pipeline route.

The following qualifications and notes are relevant to the tabulation:

- In most sections, fine and coarse alluvial soil types or cohesive soils or, in places rock occur. Unless selective excavation is undertaken in these sections, all material types will be mixed. The resulting mixture would possibly only be suitable for main fill.
- Where thin soils occur, for example in Section 6, the specific potential usage indicated in Table 2 assumes selective excavation, stockpiling and use of the thinly developed soils.
- The more cohesive soils, the hard rock and mixtures of cohesive and sandy soils and cohesive soils and rock will only provide a relatively poor quality main fill.
- Similarly, main fill comprising only cohesive soils will be of poor quality or unacceptable and main fill comprising only relatively unweathered rock will be unacceptable.
- With respect to the quality of the main fill, the route generally traverses farmland where backfill requirements can possibly be relaxed slightly given that local small settlement of the fill is unlikely to affect local operations. However, the main fill should be of adequate quality to prevent ingress of water and piping of the sidewalls of the trench or the bedding material.
- The symbols in parenthesis indicate marginal potential for use.

From Table 2, it is apparent that only the fine alluvium (sandy soils) in Sections 5 and 9 is potentially the most suitable source of selected granular material. However, it is noted that these soils contain fines and that their compactibility factors are unlikely to be less than 0.4. These soils are effectively cohesionless and relatively free draining and with additional investigation and testing and relaxation of the requirements of SABS 1200 LB, they could be considered for selected granular material.

Table 2 also indicates that there will be a dearth of both selected granular material and selected fill and that the material for main fill is also potentially problematic because of the potentially high proportion of coarse material in the coarse alluvium over approximately half the route. Sieving the coarse alluvium through a grizzly grid would produce material which is suitable for all three fill/bedding types. Quantities of coarse material, which would have to be spoiled, would also be produced.

Precise quantification of the volumes soil suitable for selected granular material, selected fill and main fill is not possible because the trial pits for this feasibility study are too far apart to allow detailed extrapolation of soil distributions.

7. GEOTECHNICAL COMPARISON OF SCHEMES A AND B

Weir sites

The geotechnical conditions at the two weir sites differ significantly.

The weir on the Berg River would be partly located directly on bedrock which would provide good founding, but the founding level steps approximately 4m at the eastern edge of the existing outcrop. A subsidiary embankment structure would probably be required on the right flank.

The Michell's Pass weir should probably also be founded on bedrock which, from current information might lie some 4m below river level. Complications include the existing intake facilities on the left bank which could interfere with the construction and positioning of the weir.

<u>Pipelines</u>

With some exceptions, groundwater is not expected to be problematic on the Berg River pipeline route, but ground and surface water will be encountered near the river crossing.

Groundwater is expected at depth in the pipe trenches over nearly half of the Michell's Pass pipeline route. Extensive dewatering, possibly including formal measures such as standpipes, will be required.

Machine excavation of the trenches along the pipeline routes for both schemes can generally be undertaken. Hard Rock is also expected in some areas, with potentially more extensive occurrences along the Michell's Pass pipeline route.

Approximately half of the Berg River route will be excavated in materials which are cohesive and reduced overbreak is expected and a narrower excavation profile can be implemented. In contrast, approximately three quarters of the Michell's Pass pipeline route will be excavated in coarse or fine alluvium, which will require flat temporary slopes and over-excavation is likely.

With further investigation and probably relaxation of the requirements of SABS 1200 LB, the quantities of excavated material which is potentially suitable for selected granular material and selected fill can be obtained from the Berg River pipeline trenches. In contrast, there is a dearth of material suitable for these bedding/fill types on the Michell's Pass pipeline route. Reworking of coarse

alluvium could provide selected granular material and selected fill materials on the Michell's Pass route, but a shortfall of these materials is still expected.

Both Scheme A and B pipeline routes cross the respective rivers, but it might be possible to relocate the Berg River route along the right bank of the river and thus avoid a complicated river crossing. Appropriate design of the weir will then be required to house the pipeline within it.

The Michell's Pass route traverses numerous farms. Numerous subsurface services, drainage ditches, roads and orchards will be affected. In contrast, relatively little disruption would be caused by a pipeline constructed for Scheme A, depending on which option is selected in terms of the Berg River crossing.

8. CONCLUSIONS AND RECOMMENDATIONS

- a) The feasibility investigations have provided a general level of information on ground and construction conditions along the pipeline routes and for the weir sites for both Schemes A and B, at a level of detail adequate to support the feasibility studies. However, more detailed investigations are recommended if this option proceeds to implementation (ie. at detailed design stage).
- b) The Berg River weir is considered the better weir site, particularly if an adequate length of spillway can be provided in the general area of the rock exposures on the west side of the river channel.
- c) The most favourable conditions with respect to groundwater are expected along the Berg River pipeline.
- d) Machine excavation is generally expected along both pipeline routes. Approximately half of the Berg River route will be excavated in materials in which overbreak can be more easily controlled and narrower excavation profiles could be adopted. In contrast, approximately three-quarters of the Michell's Pass route will be excavated in alluvium which will be less stable and overexcavation is likely.
- e) The potential for use of excavated materials for selected granular material, selected fill and even main fill is greater on the Berg River pipeline route.
- f) The routing of the pipeline along the right bank of the Berg River should be investigated because it might be possible to avoid a complicated river crossing, but will need to consider the impact on Lorelei Farm, and the risk of erosion of that embankment during floods
- g) Although only partly geotechnically related, the disruption to farming activities and traversing of orchards and vineyards along the Berg River pipeline route would be significantly less than that along the Michell's Pass route.
- h) Based on the assessments above, the Berg River pipeline route is considered geotechnically more favorable option than that of the Michell's Pass route.
- i) In order to support detailed design, it is recommended that the following areas and conditions should be investigated if this option proceeds to implementation:
 - the optimum position for a pump station at the Berg River weir,
 - the nature of the alluvium and particularly the depth to and the condition of the bedrock at the pipeline river crossings,

- more detailed trial pitting along the pipeline routes, and
- specific laboratory testing to confirm the suitability of the sandy soils for use as selected granular material.

Lado

R.A. Bradshaw Pr.Sci.Nat. R.A. BRADSHAW & ASSOCIATES cc

ANNEXURE

REVIEW OF THE GEOTECHNICAL REPORT BY MR. R. MCKELLAR, SPECIALIST CONSULTANT TO WCWC JV

Dick Bradshaw

From:	Graham English [Graham.English@aurecongroup.com]
Sent:	27 July 2011 02:50 PM
То:	mackellar
Cc:	Dick Bradshaw
Subject:	RE: WCWS Review of Geotechnical Report by RA Bradshaw

Thank you very much Robin

Hi Dick...I suggest you add Robin's full comment in as an Appendix (Specialist Geotechnical Review) to your report. Then just include any relevant comments where necessary in the body.

Thanks

Graham English

Associate I Professional Engineer (Civil) I Aurecon T +27 21 481 2458 I M +27 82 422 3828 E Graham.English@aurecongroup.com 81 Church Street, Cape Town I aurecongroup.com

From: mackellar [mailto:mackellar@icon.co.za] Sent: 27 July 2011 12:06 PM To: Graham English Subject: WCWS Review of Geotechnical Report by RA Bradshaw

Dear Graham

As requested I have reviewed the Report and attach a short note on my assessment. I consider that it is very thorough and provides an excellent basis for proceeding to the design and costing of the preferred scheme.

As noted in the report, there are some areas where additional information will be required to optimise the pipe route, in particular where the line crosses the river.

You may wish to refer to the construction report of the Drakenstein pipeline on the Berg River Project that was constructed in similar conditions.

Please advise if you require any further input.

Regards

Robin MacKellar

DISCLAIMER

APPENDIX A

BOREHOLE LOGS

R.A. Bradshaw & Associates cc - 29 July 2011

							те		Date started	3/05/201	1	BH No.	1
	CONS		GENG	NEEK		OLOGIS	13		Date completed	4/05/201	1	X-Coord	3689109X
CONTR	ACT		BERC	B RIVER	R DIVERS	ION WEIF	۲		Water level	See remarks o	olumn	Y-Coord	1780Y
SITE				BEF	RG RIVEF	र			Logged by	N.G		Level	±52.5m
CONTR	ACTOR	FAIRB	ROTHER	GEOT	ECHNICA	LENGINE	EERIN	G cc	Date	17/05/201	11	Inclination	Vertical
DRILL RUN	DRILLING METHOD	CASING DEPTH	% CORE RECOVERY	% RQD	FRACTURE FREQ.	TEST RESULTS	Depth (m)		GENERAL DESCRIP	TION	PROFILE		REMARKS
1.00	W/B		W/S	-					Medium brown, me vith scattered, fine d gravel between 5m a m.	to medium, sub			55m (12/05/2011) .27m (31/05/2011)
1.45	SPT		67	-		N=11						4	.13m (15/06/2011)
2.00	W/B		W/S	-								· •	
2.45	SPT		69	-		N=12							
3.00	W/B		W/S	-								- - - -	
3.45	SPT		82	-		N=10						- - - -	
4.00	W/B		W/S	-								• • •	
4.45	SPT		60	-		N=20	_					· · · · · · · · · · · · · · · · · · ·	
5.00	W/B		W/S	-								- - - -	
5.45	SPT		56	-		N=25	5.45					0.45.7m.N.s.m	- 4
6.00	W/B		W/S	-				dense	ELLY SAND Light to to very dense, fine to	coarse sand with	0 0 0 0 0 0	·	atrix recovered.
6.45	SPT		58	-		N=30	4	more g	nedium, sub rounded ravelly between 6.45		0 0 0 0 0 0	- - - -	
7.00	NWD4		73	-				Alluviu	n.		0 0 0 0 0 0	· · · · · · · · · · · · · · · · · · ·	
7.45	SPT		40	-		N=65	-				0 0 0	•	
8.00	NWD4		22	-			8.20				0 0 0 0 0 0	4 	
8.45	SPT		40	-		N=24	0.20		ELLY CLAYEY SILT M		6 [4 [6]	Grading betw	een 9m and 9.45m to nedium to coarse san
9.00	NWD4		82	-			-	to med	brown, firm to stiff, cl lium, sub rounded gr	avel. Completely	6 0 0 0	with fine to	medium, sub rounde
9.45	SPT		76	-		N=22	-	places,	red Malmesbury grey to marginal highly we		6,0,0,0	gravel. Possib	ie caving (?)
10.00	NWD4		91	-				rock.			10,0,1		

					SSOCIA				Date started	3/05/201	1	BH No.	1
	CONS	SULTIN	G ENG	NEER	ING GE	OLOGIS	TS		Date completed	4/05/201	1	X-Coord	3689109X
CONTR	АСТ		E	BERG/B	REEDE R	RIVER			Water level	See page 1 remark	s column	Y-Coord	1780Y
SITE					-				Logged by	N.G		Level	±52.5m
CONTR	ACTOR	FAIRB	ROTHER	GEOT	ECHNICA		EERIN	G cc	Date	17/05/201	1	Inclination	Vertical
DRILL RUN	DRILLING METHOD	CASING DEPTH	% CORE RECOVERY	% RQD	FRACTURE FREQ.	TEST RESULTS	Depth (m)		GENERAL DESCRIF	PTION	PROFILE		REMARKS
10.45	SPT		29	-		N=19		Gradin	g, in places, betwe to highly weathered (en 12.15m and	6 6 6		
11.00	NWD4	NX	NX 49 - highly fractured, soft to very soft rock.									× /	
11.45	SPT	11.00	47	-		N=29	-				6 0 0		
12.00	NWD4		100	-							6 0 0	é	
12.15	SPT		113	-		N=R	12.50				10,01		
13.00	NWD4		120	58	6			moder	WACKE Greyish kha ately weathered, hi	ighly to slightly			
								fracture	ed, soft to medium hard sbury Group.	d rock greywacke.			
14.00	NWD4		69	43				Gradin	g between 13.6m and	d 14m to medium			
					4			with s	very stiff, completely cattered fine to me	/ weathered rock dium gravel-size			
15.00	NWD4		107	88	_			fragme	ents ferruginised rock.				
					16				sub horizontal an nese stained.	d sub vertical.			
_					5								
16.50	NWD4		84	60			16.50						
-												END	OF BOREHOLE

			_		SSOCIA		то		Date started	5/05/201	1	BH No.	2
	CONS	SULIIN	G ENG	INEER	ING GE	OLOGIS	15		Date completed	9/05/201	1	X-Coord	3689129X
CONTR	АСТ		BERC	G RIVEF	R DIVERS	ION WEIF	२		Water level	See remarks o	column	Y-Coord	1818Y
SITE				BEI	RG RIVEF	र			Logged by	N.G.		Level	±52.1m
CONTR	ACTOR	FAIRB	ROTHER	GEOT	ECHNICA	LENGIN	EERIN	G cc	Date	17/05/201	11	Inclination	Vertical
DRILL RUN	DRILLING METHOD	CASING DEPTH	% CORE RECOVERY	% RQD	FRACTURE FREQ.	TEST RESULTS	Depth (m)		GENERAL DESCRIP	PTION	PROFILE		REMARKS
1.00	W/B		W/S						Medium brown, lo fine sand becoming n n.Alluvium.				40m (12/05/2011) 3.88m (31/05/2011)
1.45	SPT	1	51	_	1	N=16	1					3	.59m (15/06/2011)
2.00	W/B	1	W/S	-]						
2.45	SPT	-	49	-	1	N=20	1						
3.00	W/B	1	W/S	_] [1						
3.45	SPT		62	_]	N=8							
4.00	W/B		W/S	-									
4.45	SPT		51	-		N=15							
5.00	W/B		W/S	-									
5.45	SPT		58			N=23	5.45						
6.00	W/B		W/S	-				mediun	ELLY SAND Light to n dense and dense, fir	ne to coarse sand	0 0 0		atrix recovered.
6.45	SPT		49	-		N=38		with fir Alluviur	ne to medium, sub m.	rounded gravel.	0 0 0		
7.00	W/B		W/S	-				Becom	ing more gravelly bet	ween 7.45m and	o o o		
7.45	SPT		44	-		N=26		8m dep			000		
8.00	NWD4	-	49	-							000		
							8.50				0 0 0		
9.00	NWD4	-	40	0	>20			SHALE greenis	h grey from 10m d	lepth, moderately		-	
9.50	NWD4	-	74	24				highly fr	ed to slightly weathere actured, grading to mod	lerately fractured in			
	NWD4		63	0				Group.	very soft and soft rock	snale. Malmesbury			

							то		Date started	5/05/201	1	BH No.	2
		SULIIN	GENG	INCER		OLOGIS	12		Date completed	9/05/201	1	X-Coord	3689129X
CONTR	ACT		BERG	RIVEF	R DIVERS	ION WEIF	2		Water level	See page 1 remarl	ks column	Y-Coord	1818Y
SITE				BEI	RG RIVEF	२			Logged by	N.G.		Level	±52.1m
CONTR	ACTOR	FAIRB	ROTHER	GEOT	ECHNICA	L ENGINE	EERIN	G cc	Date	17/05/20 ⁻	11	Inclination	Vertical
DRILL RUN	DRILLING METHOD	CASING DEPTH	% CORE RECOVERY	% RQD	FRACTURE FREQ.	TEST RESULTS	Depth (m)		GENERAL DESCRIF	PTION	PROFILE		REMARKS
								Gradin grey, ve	g between 12.5 and 1 ery stiff, completely we	13.3m to greenish athered shale.		-	
11.00	NWD4	NX	63	0	>20			Sub ve	rtical and sub horizont	al jointing with sub			
11.50	NWD4	11.00	110	50				vertical	fissility poorly develop	bed.			
_					3								
12.50	NWD4		50	21	>20								
_					_								
13.50	NWD4		60	0	_		13.30	SHALE	Greenish grey and grey	. slightly weathered.		- Shale fissile	with 'joint' planes su
					10			modera	tely to very highly fractu k shale. Malmesbury Gro	red, soft to medium			nooth to slightly rough.
14.50	NWD4		97	32	>20		14.50		-				
_												END	OF BOREHOLE
_													
_													
_													
_													

							то		Date started	11/05/201	1	BH No.	3
	CON	SULTIN	G ENG	NEER	ING GEO	OLOGIS	15		Date completed	12/05/201	11	X-Coord	3689158X
CONTR	ACT		BERC	B RIVEF	R DIVERS	ION WEIF	2		Water level	See remarks c	olumn	Y-Coord	1809Y
SITE				BEF	RG RIVEF	२			Logged by	N.G.		Level	±52.1m
CONTR	ACTOR	FAIRB	ROTHER	GEOTI	ECHNICA	LENGINE	EERIN	G cc	Date	17/05/201	11	Inclination	Vertical
DRILL RUN	DRILLING METHOD	CASING DEPTH	% CORE RECOVERY	% RQD	FRACTURE FREQ.	TEST RESULTS	Depth (m)		GENERAL DESCRIF	PTION	PROFILE		REMARKS
1.00	W/B	W/B W/S - N=29 O							SAND Medium brown slightly silty fine sar ith depth. Aeolian.			ŗ	79m (12/05/2011) .78m (31/05/2011)
1.45				-		N=29	-		g between 6m and 6	6.45m to medium	n an tagairtíg. De bar de grande De bar de grande g	r r 3. t	48m (15/06/2011)
2.00	W/B		W/S	-				sand.				r. t	
2.45	SPT	-	60	-	-	N=15						e. F.	
3.00	W/B		W/S	-								t t	
3.45	SPT	-	47	-	-	N=8						ι Γ	
4.00	W/B		W/S	-								r r	
4.45	SPT	1	53	-		N=11						e e	
5.00	W/B		W/S	-	-								
5.45	SPT		51	-		N=19						E R	
6.00	W/B		W/S	-									
6.45	SPT		53	-		N=22	6.45						
7.00	W/B		W/S	-				dense,	medium to coarse s		0 0 0 0 0 0		lo matrix recovered gravelly with depth.
7.45	SPT		58	-		N=23		mediur	n, sub rounded gravel.	Alluvium.	0 0 0 0 0 0		
8.00	NWD4		27	-							o o o		
8.50	NWD4		36	-							0 0 0 0 0 0) : :	
9.00	NWD4	NX	30	-			9.00				0 0 0 0 0 0	-	
9.50	NWD4	9.00	82	-			9.50	weather	Y SILT Greenish grey, v red Malmesbury shale.			Grading in ra weathered, very	re places to moderate soft rock shale.
	NWD4		97	30	>20			SHALE	See description on pa	age 2.		-	

					SSOCIA				Date started	11/05/201	1	BH No.	3
		SULIIN				OLOGIS			Date completed	12/05/201	11	X-Coord	3689158X
CONTR	ACT		BERG	G RIVEF	R DIVERS	ION WEIF	२		Water level	See page 1 remark	ks column	Y-Coord	1809Y
SITE				BEI	RG RIVEF	२			Logged by	N.G.		Level	±52.1m
CONTR	ACTOR	FAIRB	ROTHER	GEOT	ECHNICA	L ENGINE	EERIN	G cc	Date	17/05/201	11	Inclination	Vertical
DRILL RUN	DRILLING METHOD	CASING DEPTH	% CORE RECOVERY	% RQD	FRACTURE FREQ.	TEST RESULTS	Depth (m)		GENERAL DESCRIF	PTION	PROFILE		REMARKS
10.50	NWD4		97	30	-			slightly	Greenish grey, mode weathered, highly	and moderately		weathered, ve	reenish grey, highly ry highly fractured, very
					5			depth,	ed becoming very hig soft rock shale. Malme	hly fractured with sbury Group.		soft rock sl weathered sha	hale and completely ale.
12.00	NWD4		93	42	>20		12.00	Sub ho	rizontal joints. Locally	fissile.			
12.00							12.00					END	OF BOREHOLE
													-
-													-
-													-
_													
-													
-													-
-													-

					SSOCIA		то		Date started	2/06/201	1	BH No.	4A
	CONS	SULIIN	G ENG	NEER	ING GE	OLOGIS	15		Date completed	3/06/201	1	X-Coord	3689125X
CONTR	ACT		BERG	G RIVEF	R DIVERS	ION WEIF	2		Water level	-		Y-Coord	1830Y
SITE				BEI	RG RIVEF	र			Logged by	N.G.		Level	50.5m
CONTR	ACTOR	FAIRB	ROTHER	GEOT	ECHNICA		EERIN	G cc	Date	10/06/201	11	Inclination	60 °
DRILL RUN	DRILLING METHOD	CASING DEPTH	% CORE RECOVERY	% RQD	FRACTURE FREQ.	TEST RESULTS	Depth (m)		GENERAL DESCRIF	PTION	PROFILE		REMARKS
1.00	W/B		W/S	-	_			SAND dense, mediur	Medium brown, lo slightly silty fine n to coarse from 3m de	sand becoming		uncertain.	eness of wash samples ecomposed organic nuncertain.
2.00	W/B	-	W/S	-	_								-
3.00	W/B	-	W/S	-	_								-
4.00	W/B		W/S	-									
4.45	SPT	-	64	-		N=9	_						
- 5.50	W/B	_	W/S	-			5 70						-
5.95	SPT	-	-	-	-	N=11	5.70		ELLY SAND Medium d gravel. No matrix rec		0 0 0 0 0 0 0 0 0	5.95m depth. and gravelly s	urred between 5.5m and Contact between sand and therefore unknown
7.00	NWD4	-	38	-							0 0 0 0 0 0		J. -
8.00	NWD4 NWD4		58 70				7.90		WACKE Greyish kha		0 0 0	Grading in pla	ces, between 7.9m and
8.50	NWD4	NX 8.50	140	0	>20			black, highly	highly to moderately to highly fractured, so eywacke.	weathered, very		8.2m depth, t	o khaki, probably very pletely weathered
9.50	NWD4		78	20			9.50	Locally	Manganese stained.			-	
												END C	OF BOREHOLE

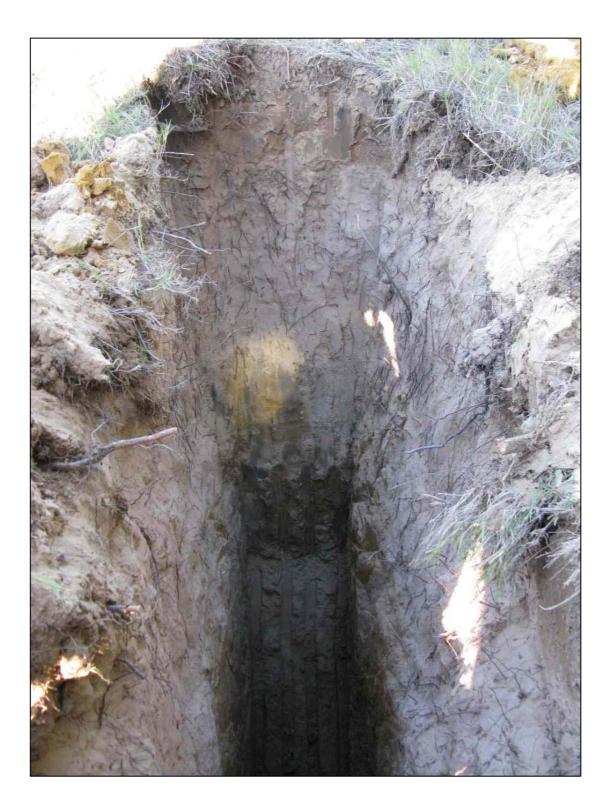
					SSOCIA		то		Date started	7/06/201	1	BH No.	4B
	CONS	SULTIN	G ENG	NEER	ING GE	ULUGIS	15		Date completed	7/06/201	1	X-Coord	3689125X
CONTR	ACT		BERG	B RIVEF	R DIVERS	ION WEIF	۲		Water level	-		Y-Coord	1830Y
SITE				BE	RG RIVEF	र			Logged by	N.G.		Level	50.5m
CONTR	ACTOR	FAIRB	ROTHER	GEOT	ECHNICA		EERIN	G cc	Date	12/06/201	11	Inclination	25°
DRILL RUN	DRILLING METHOD	CASING DEPTH	% CORE RECOVERY	% RQD	FRACTURE FREQ.	TEST RESULTS	Depth (m)		GENERAL DESCRIP	PTION	PROFILE		REMARKS
								SAND mediur	Medium brown, pi n dense, fine to mediur	robably loose to m sand. Alluvium.		Representat uncertain.	iveness of samples -
2.00	W/B	-	W/S	-									-
4.00	W/B	-	W/S	-	_								-
6.00	W/B	-	W/S	-	-		6.00	No. co	mple recovered due	to water loss	0 0 0		-
-								Possib	ly gravelly sand or sand or clayey silt.	verlying gravelly		2 2 2 2	-
-												2 2 2 2 2	-
	W/B			-							0 0 0		

					SSOCIA ING GE		те		Date started	7/06/201	1	BH No.	4B
									Date completed	7/06/201	1	X-Coord	3689125X
CONTR	ACT		BERG	G RIVEF	R DIVERS	ION WEIF	۲		Water level	-		Y-Coord	1830Y
SITE				BEI	RG RIVEF	2			Logged by	N.G.		Level	50.5m
CONTR	ACTOR	FAIRB	ROTHER	GEOT	ECHNICA	LENGINE	EERIN	G cc	Date	12/06/201	11	Inclination	25°
DRILL RUN	DRILLING METHOD	CASING DEPTH	% CORE RECOVERY	% RQD	FRACTURE FREQ.	TEST RESULTS	Depth (m)		GENERAL DESCRIP	TION	PROFILE		REMARKS
	W/B SPT	-	-	-				As from	n 6m. No sample recov	ered.			
12.50 12.80	W/B SPT	-	- 70	- 0		N=R	12.50 12.80	1	ACKE Greenish grey, highly			fractured, soft rock	with residual greywacke.
14.00	NWD4	NX 13.50	82	19	>20 8 >20			borderl fracture	WACKE Grey, sligh line unweathered, h ed, hard rock greywack generally sub vertical.	ighly to slightly		to slightly wea highly fracture	wnish grey, moderatel athered, highly and ver ed, medium hard to har
- 15.50	NWD4		93	81	4							rock greywack	e.
16.70	NWD4		100	100			16.70						
-												END	OF BOREHOLE
_													

					SSOCIA		то		Date started	10/06/201	1	BH No.	5
	CONS		G ENG	NEER	ING GE	OLUGIS	12		Date completed	13/06/201	1	X-Coord	1736Y
CONTR	АСТ		BERG	B RIVEF	R DIVERS	ION WEIF	२		Water level	-		Y-Coord	3689077X
SITE				BEI	RG RIVEF	र			Logged by	N.G.		Level	±53.1m
CONTR	ACTOR	FAIRB	ROTHER	GEOT	ECHNICA	LENGIN	EERIN	G cc	Date	14/06/201	1	Inclination	Vertical
DRILL RUN	DRILLING METHOD	CASING DEPTH	% CORE RECOVERY	% RQD	FRACTURE FREQ.	TEST RESULTS	Depth (m)		GENERAL DESCRIF	PTION	PROFILE		REMARKS
1.00	W/B		52					fine sa	SAND Medium br n dense, becoming de nd becoming fine to m uvium. Locally very v	nedium sand from		त.	
1.45	SPT		67	-		N=15		betwee	n 1m and 1.45m.	,		 	
2.00	W/B		W/S	-								1 - - -	
2.45	SPT		64	-		N=5							
3.00	W/B		W/S	-								त. 	
3.45	SPT		60	-		N=11							
4.00	W/B		W/S	-								a a	
4.45	SPT		76	-		N=16						त्	
5.00	W/B		W/S	-								[*] () ()	
5.45	SPT		76	-		N=14						ा.	
6.00	W/B		W/S									त - -	
6.45	SPT		69	-		N=25						1. 1. 1.	
7.00	W/B		W/S	-								4 , , , ,	
7.45	SPT		82	-		N=35	7.40		Y SILT Khaki, staine	d black vory stiff			
8.00	NWD4	NX	109	0				clayey	silt grading in pl	laces to highly			
8.45	SPT	8.00	69	0		N=51	8.60	shale. F	red, very highly fractu Residual Malmesbury	shale.			
9.00	NWD4		127	0				SHALE	E Khaki, stained red, very highly to high	black, highly			
9.45	SPT		60	0		N=32		soft to s	soft rock shale. Gradin tely weathered Malme	g in places to stiff,			
10.00	NWD4		138	36									

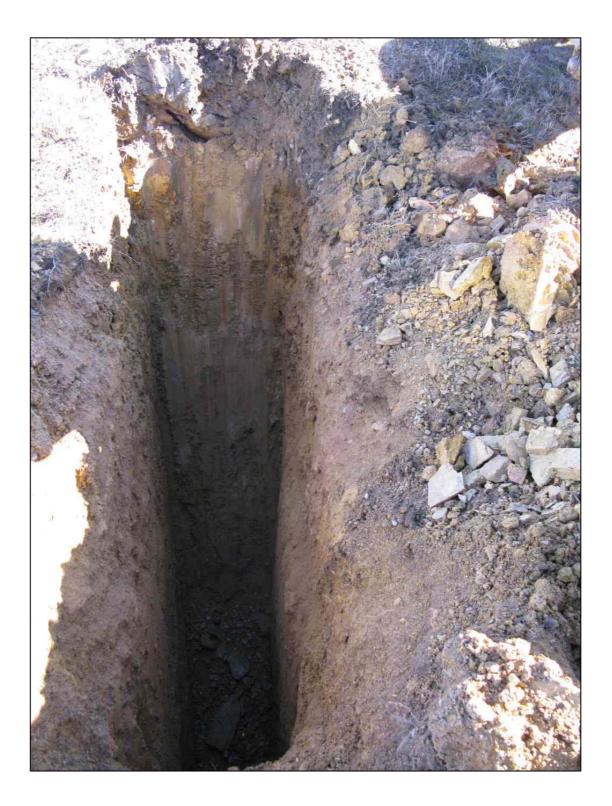
					SSOCIA		то		Date started	10/06/201	11	BH No.	5
	CONS	SULTIN	G ENG	NEER	ING GE	OLOGIS	IS		Date completed	13/06/201	11	X-Coord	1736Y
CONTR	ACT		BERC	G RIVER	R DIVERS	ION WEIF	۲		Water level	-		Y-Coord	3689077X
SITE				BEF	RG RIVEF	२			Logged by	N.G.		Level	±53.1m
CONTR	ACTOR	FAIRB	ROTHER	GEOTI	ECHNICA		EERIN	G cc	Date	14/06/201	11	Inclination	Vertical
DRILL RUN	DRILLING METHOD	CASING DEPTH	% CORE RECOVERY	% RQD	FRACTURE FREQ.	TEST RESULTS	Depth (m)		GENERAL DESCRIF	PTION	PROFILE		REMARKS
10.375	SPT		77	0 - N=R 10.375 SHALEAs from 8.60m.									
												END (OF BOREHOLE
-													
-													
-													
_													
-													
-													
-													
-													
-													

		R.A. BRADSHAW & ASSOCIATES cc							Date started	14/06/201	1	BH No.	6
		SULTING ENGINEERING GEOLOGISTS							Date completed	14/06/201	1	X-Coord	3689097X
CONTR	ACT		BERG	B RIVER	DIVERS	ION WEIF	2		Water level	See remarks c	olumn	Y-Coord	1819Y
SITE				BEF	RG RIVEF	२			Logged by	N.G.		Level	±52m
CONTR	ACTOR	FAIRB	ROTHER	GEOTE	ECHNICA	L ENGINE	EERIN	G cc	Date	20/06/201	1	Inclination	Vertical
DRILL RUN	DRILLING METHOD	CASING DEPTH	% CORE RECOVERY	% RQD	FRACTURE FREQ.	TEST RESULTS	Depth (m)		GENERAL DESCRIP	ντιον	PROFILE		REMARKS
_									SAND Medium br n dense, silty fine sar d coarser with depth. A			.r.	20m (15/06/2011) 20m (18/06/2011)
1.50	W/B		W/S	-			_					역. 	
1.95	SPT		73	-	-	N=14	_					、 	
												4. 4.	
3.00	W/B		W/S	-								7. [] [] 	
3.45	SPT		67	-		N=7						4 4	
												4	
- 4.50	W/B		W/S	-								े व ब	
4.95	SPT		53	_		N=21	-					त् । त्र	
6.00	W/B		W/S	-			-					त्	
6.45	SPT		84	-		N=25	-					4 -	
_												अ न्	
7.50	W/B		W/S	-			7.50					4 4	
							8.00	sub rour	LLY SAND Recovered a nded gravel. Alluvium. No	matrix recovered.	000		at 7.50m. No penetration.
8.50	NWD4		44	-				and ver	Y SILT Medium brown, y stiff, clayey silt grading	between 8.5m and			
8.875	SPT	NX	91	0		N=R	9.00	8.875m	to highly weathered, ve t and soft rock greywacke	ery highly fractured,			
- 9.50	NWD4	9.0	107	49	14		0.00		WACKE See description				
9.95	SPT		89	0	-	N=32	-						

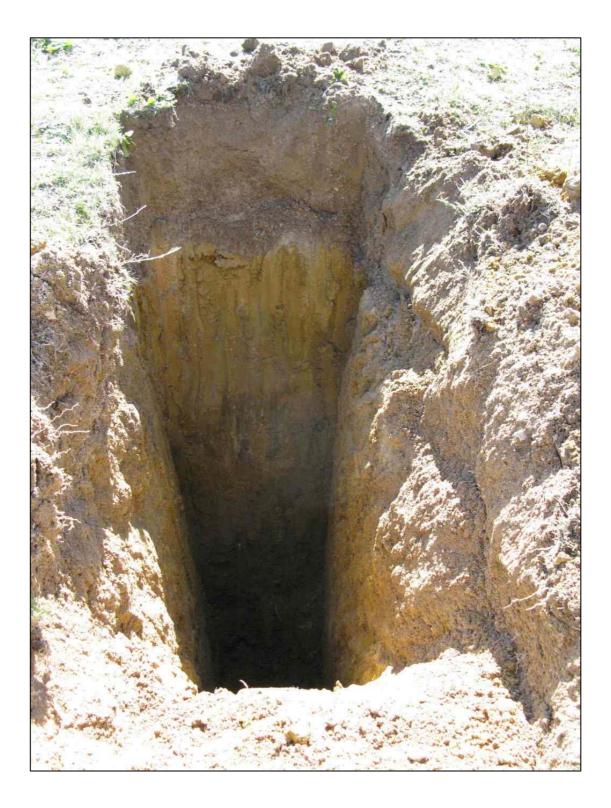

	R.A. BRADSHAW & ASSOCIATES cc								Date started	14/06/201	1	BH No.	6
	CONSULTING ENGINEERING GEOLOGISTS								Date completed	14/06/201	1	X-Coord	3689097X
CONTR	ACT		BERG	B RIVEF	R DIVERS	ION WEIF	2		Water level	See page 1 remark	s column	Y-Coord	1819Y
SITE				BE	RG RIVEF	२			Logged by	N.G.		Level	±52m
CONTR	ACTOR	FAIRB	ROTHER	GEOT	ECHNICA	L ENGINE	EERIN	G cc	Date	20/06/201	1	Inclination	Vertical
DRILL RUN	DRILLING METHOD	CASING DEPTH	% CORE RECOVERY	% RQD	FRACTURE FREQ.	TEST RESULTS	Depth (m)		GENERAL DESCRIF	PTION	PROFILE		REMARKS
10.50	NWD4		100	0	>20		12.00	modera fracture	NACKE Medium brow ately weathered, high ed, soft to medium hard nese stained.	ly to very highly		highly weathe highly fracture greywacke ar	een 9.5m and 9.95m to ered, very highly and d, largely very soft rock d between 9.95m and ompletely weathered
												END	DF BOREHOLE

		R.A. BRADSHAW & ASSOCIATES cc							Date started	28/06/201	1	BH No.	7	
	CON	NSULTING ENGINEERING GEOLOGISTS							Date completed	28/06/201	1	X-Coord	3689050X	
CONTR	ACT		BERG	G RIVEF	R DIVERS	ION WEIF	۲		Water level	-		Y-Coord	1850Y	
SITE				BEI	RG RIVEF	र			Logged by	N.G.		Level	±51.5m	
CONTR	ACTOR	FAIRB	ROTHER	GEOT	ECHNICA		EERIN	G cc	Date	1/07/201	1	Inclination	Vertical	
DRILL RUN	DRILLING METHOD	CASING DEPTH	% CORE RECOVERY	% RQD	FRACTURE FREQ.	TEST RESULTS	Depth (m)		GENERAL DESCRIP	PTION	PROFILE		REMARKS	
-								grey at	SAND Medium brov t depth, loose, silty fin ty with depth. Alluvium.	e sand becoming		·		
1.50	W/B	-	W/S	-	-	N=4	-					4. 1.		
1.95	SPT	-	60	-	-	11-4	-							
3.00	W/B		W/S											
3.45	SPT	-	53	-	-	N=6	_					有		
3.43	JF1			-			-					יי ת ת ת		
4.50	W/B		W/S	-								त. त.	-	
4.95	SPT]	60	_		N=4						9. 一者: - 者:		
_							5.50						-	
6.00	W/B		W/S	-			0.00	GRAVE	ELLY SAND Light to medium and coarse	medium brown,	0 0 0	No matrix rec and 7.2m dept	overed between 6.45m	
6.45	SPT		40	-		N=41			, sub rounded gravel. A		o o o	Representativ	eness of recovered core	
7.00	NWD4]	33	-							000			
7.50	NWD4	NX	94	0			7.20	GREY	WACKE Greenish g	grey, highly and	000		e. Grading to completely	
		7.50			>20			modera	tely weathered, very high WACKE Greenish gre	ly fractured, soft		weathered grey	vacke in places.	
-					12			genera	fractured, soft to me	red, very highly to				
8.80	NWD4		92	42			8.80							
												END	OF BOREHOLE	

APPENDIX B


DESCRIPTION OF SOIL PROFILES IN TRIAL PITS

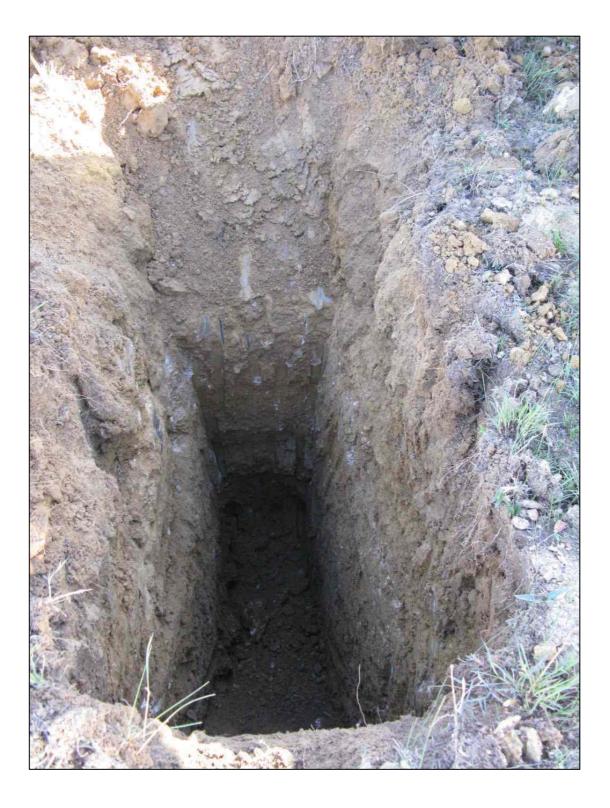
	SOIL PROFI	-E				
PRO JEC T: HO LE NO : METHO D O F INV	BERG RIVER - VOELVLEI DAM PIPELIN VV1 ESTIGATION : DIGGER/LOADER	TE PROJECT NO: 119410 DATE: 07/06/2011 GPS COORDS:448Y; 3689784X				
	DEPTH (m) DE	SCRIPTION				
: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :	i fine sand. Aeolian. Numerous fine grass r i 0.40 i SILTY SAND Slightly moist, light brown silty, fine sand. Aeolian. Numerous f i i	, medium dense to dense, intact, very slightly clayey, ine roots.				
O 1.4-2.15n : : / : : :/: :/: : :/: :/: : :/: :/: : :/: :/: : :/: :/: : :/: :/: : : / : : : / : : : / :	CLAYEY SILTY SAND Slightly moist to moist, medium brown, dense, intact, clayey : : /: : silty, very weakly cemented fine sand. Alluvium. Scattered fine roots. : : /: : /: : O 1.4-2.15n : : /: : : : /: :					
	SANDY CLAYEY SILT Very moist sandy, clayey silt. Alluvium. 2.95 Note: Practical depth limit of machi					
		NOTTO SCALE				
O DISTURBED SAM		 ✓ WATER TABLE ¥ PERCHED WATER TABLE 				



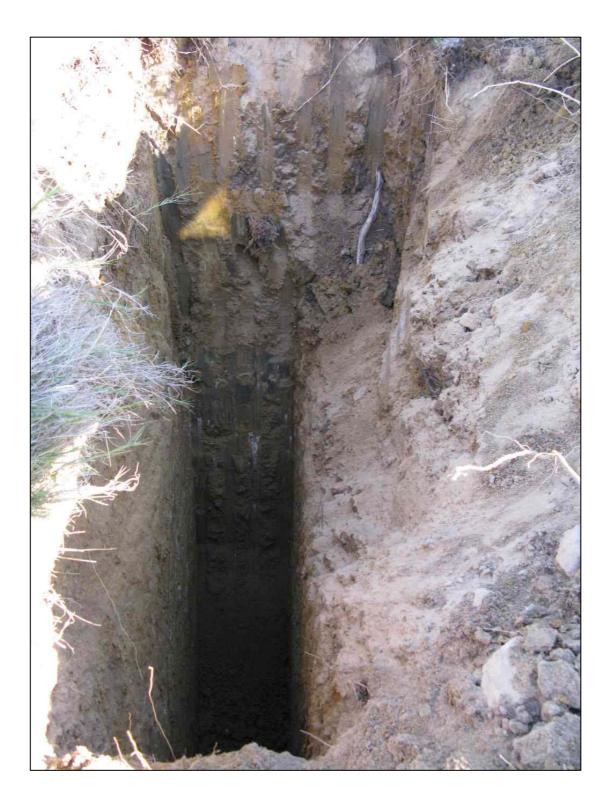
	SOIL PRO	FILE	
PROJECT: HOLENO: MEIHODOFINV	BERG RIVER - VOELVLEI DAM PIPE VV3 ESTIGATION : DIGGER/LOADER	DATE : 07/06/2011	
/ o / o o / o / O 0.3-1.1m / o / o o / o / / o / o	 GRAVELLY CLAYEY SILTY S/ to stiff, intact, clayey, silty sand with fir 0.30 GRAVELLY CLAYEY SILT Mois slightly slickensided in upper parts, cla highly weathered to moderately v Residual Malmesbury shale. 0 1.10 SHALE Pinkish orange brown, h 	DESCRIPTION AND Very moist, orange brown and greyish brown, firm ine to coarse, very hard quartz gravel. Alluvium. It to very moist, orange brown, stained black, very stiff, ayey silt with fine to medium, gravel-size fragments of weathered with depth, soft to medium hard rock shale. It ighly to moderately weathered, sub vertically foliated, ver thes of completely weathered Malmesbury shale. Malmesbury achine.	-
		NOT TO SCALE	
O DISTURBED SAM		 ✓ WATER TABLE ¥ PERCHED WATER TABLE 	

R.A. Bradshaw & Associates cc – 29 July 2011

	SOIL PROFI	-E
PRO JECT:	BERG RIVER - VOELVLEI DAM PIPELIN	E PROJECTNO: 119410
HOLE NO:	VV4A	DATE: 07/06/2011
METHOD OF INV	ESTIGATION : DIGGER/LOADER	GPS COORDS: -462Y; 3690698X
	DEPTH (m) DE	SCRIPTION
· : : : : : : : : : : : : : : : : : : O 0.4-0.9m	 medium sand with scattered, fine, sub rou 0.05m then scattered throughout. 0.40 	rown, soft to firm, intact, slightly clayey, silty fine to aded gravel. Alluvium. Concentrated roots to , reddish brown, stiff, intact, silty sandy clay with huvium.
0: 0: 0 : 0 0 0: 0 : 0 : 0 0 0: 0 : 0 : 0 0 0: 0 : 0 : 0 0	 clayey, silty, sandy fine to medium g clayey, silty, sandy fine to medium g clayey, silty, sandy fine to medium g 	t, reddish and orange brown, very stiff, intact, slightly ravel. Alluvium.
0: 0 : 0 : 0 0 0: 0 : 0 : 0 0 0: 0 : 0 	wn, highly rapidly becoming moderately weathered, k greywacke. Calcareous cementations in upper	
	Note: Machine refusing at 2.3m dept	h.
		NOT TO SCALE
O DISTURBED SAM	MPLE	V WATER TABLE
[] UNDISTURBED :	SAMPLE	¥ PERCHED WATER TABLE


TP VV4A

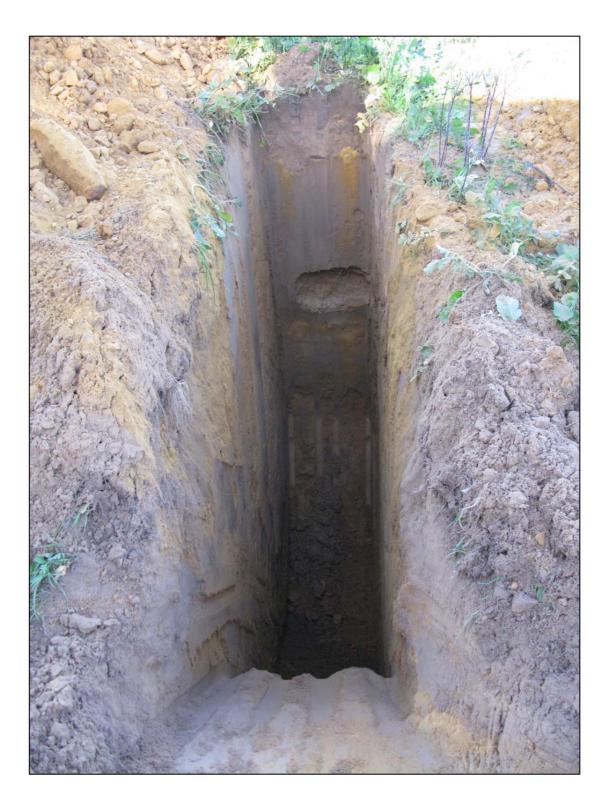
	SOIL PRO	FILE					
PROJECT: HOLE NO : METHOD OF INV	BERG RIVER - VOELVLEI DAM PIPE VV5 ESTIGATION : DIGGER/LOADER	LINE PROJECT NO: 119410 DATE: 07/06/2011 GPS COORDS :-1173Y; 3691357X					
:0: : : :0 :/ :0: /: :0: : : :0 :/ :0: /: :0: : : :0 :/:0:/:0 ¥ 0.5m 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 /	 GRAVELLY CLAYEY SILTY SA dense, intact, slightly clayey, silty coars 0.30 CLAYEY SANDY GRAVEL Wet, 0.50 medium to coarse sandy, fine to locally 	vn, stiff to very stiff, intact, slightly silty, sandy clay with					
:/ :0: /: :0: : : :0 :/ :0: /:	<pre>/ : 0 / i / i o / i / i / : 0 / i / i / : 0 / i : 0 / i / i / : 0 / i : 0 : : : :0: : 0 : :!: : 0 : :: 0 : :: : 0 : :: 0 : :: 0 : : : 0 : : : 0 : : : 0 : : : 0 : : : : 0 : : : 0 : : : 0 : : : 0 : : : 0 : : : 0 : : : 0 : : : 0 : : : 0 : : : 0 : : : : 0 : : : 0 : : : 0 : : : : 0 : : : 0 : : : : 0 : : : : 0 : : : 0 : : : : 0 : : : 0 : : : 0 : : : : 0 : : : : 0 : : : : 0 : : : : : 0 : : : : 0 : : : : : 0 : : :</pre>						
:/ :0: /: :0: : : :0 :/ :0: /: 	: <u>2.80</u> _ GREYWACKE Light to medium bro	wn, highly to moderately weathered, highly fractured, with patches of completely weathered Malmsebury in upper contact.					
	Note: Machine refusing at 3m depth.	NOT TO SCALE					
O DISTURBED SAN [] UNDISTURBED S		$\frac{V}{\underline{Y}}$ water table $\frac{Y}{\underline{Y}}$ perched water table					


R.A. Bradshaw & Associates cc – 29 July 2011

	SOIL PROF	FILE				
PRO JEC T: HOLE NO : MEIHOD OF INV	BERG RIVER - VOELVLEI DAM PIPEI VV6 ESTIGATION : DIGGER/LOADER	LINE PROJECT NO: 119410 DATE: 07/06/2011 GPS COORDS :-1961Y; 3691298X				
	GRAVELLY SILTY SAND Very					
: 0 : : 0 : :/: :/: : : / : : :/: :/: : : / :	GRAVELLY SILTY SAND Very moist to wet, greyish brown becoming medium brown, medium dense, intact, slightly clayey, silty fine to medium sand with fine, sub rounded gravel. O : [: 0 :]: 0 : 0.30 Alluvium. Numerous fine roots in upper 0.1m. [: 1/:]: 1 :]: CLAYEY SILTY SAND Very moist to slightly moist, white and orange brown becoming khaki [: 1/:]: 1 :]: [: 1/:]:					
р/я / р/я / р/я	SANDY CLAY Moist, orange brown with fine, sub rounded gravel. Alluvium 3.05	n and white, very stiff, intact, slightly silty, sandy clay n.				
	Note: Practical depth limit of mac	chine.				
		NOT TO SCALE				
O DISTURBED SAM		 ✓ WATER TABLE ¥ PERCHED WATER TABLE 				

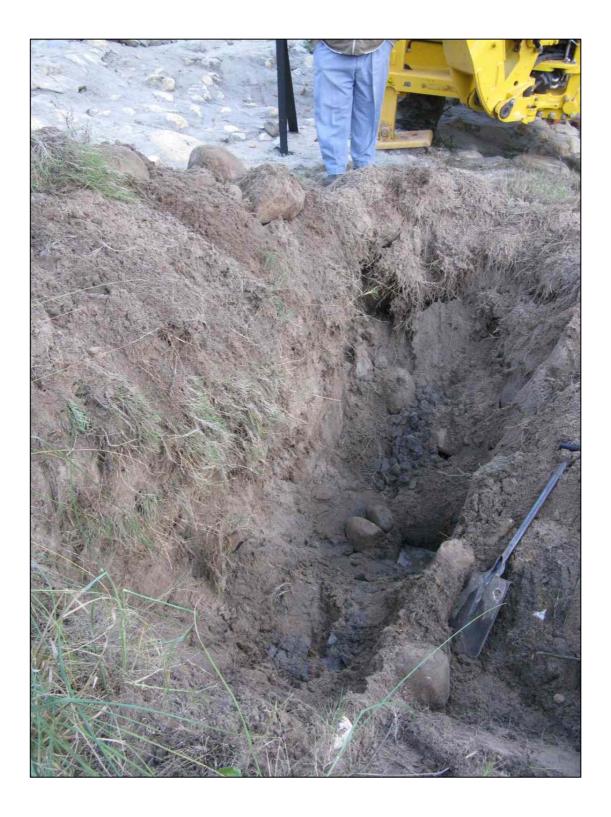
	SOIL PRO	FILE
PRO JECT:	BERG RIVER - VOELVLEI DAM PIP	ELINE PROJECTNO: 119410
HOLE NO:	VV7	DATE: 07/06/2011
MEIHOD OF INVE	STIGATION : DIGGER/LOADER	GPS COORDS : -2155Y; 3691322X
	DEPTH (m)	DESCRIPTION
: : : : : : : : : : : : : : : : : : / : : : : /: : : : 0: : : 0:	 silty fine sand. Alluvium. Slightly oraş 0.40 CLAYEY SILTY SAND Moist, or sandd grading to sandy, clayey si thick tree roots. Alluvium (?) thick tree roots. Alluvium (?) : : : : : 2.80 CLAYEY SILTY GRAVELLY SA sand with fine to medium, sub rounded 	
O DISTURBED SAME		 ✓ WATER TABLE ¥ PERCHED WATER TABLE

	SOIL PROFILE	
PROJECT: HOLE NO: METHOD OF INVI	BERG RIVER - VOELVLEI DAM PIPELINE VV8 ESTIGATION : DIGGER/LOADER	PROJECTNO: 119410 DATE: 05/07/2011 GPS COORDS: 1354Y; 3689356X
	DEPTH (m) DESC	RIPTION
O 1.2-3.2m O 1.2-	Image: Topsoil. 0.40 Image: CLAYEY SILTY SAND Moist, orange brown edium sand. Alluvium. Image: Image	ose, intact, slightly silty, fine to medium sand. wn, stiff, intact, slightly clayey, silty fine to own, medium dense, layered, slightly silty, fine to
	Note: No refusal.	
		NOT TO SCALE
O DISTURBED SAM		✓ WATER TABLE ¥ PERCHED WATER TABLE

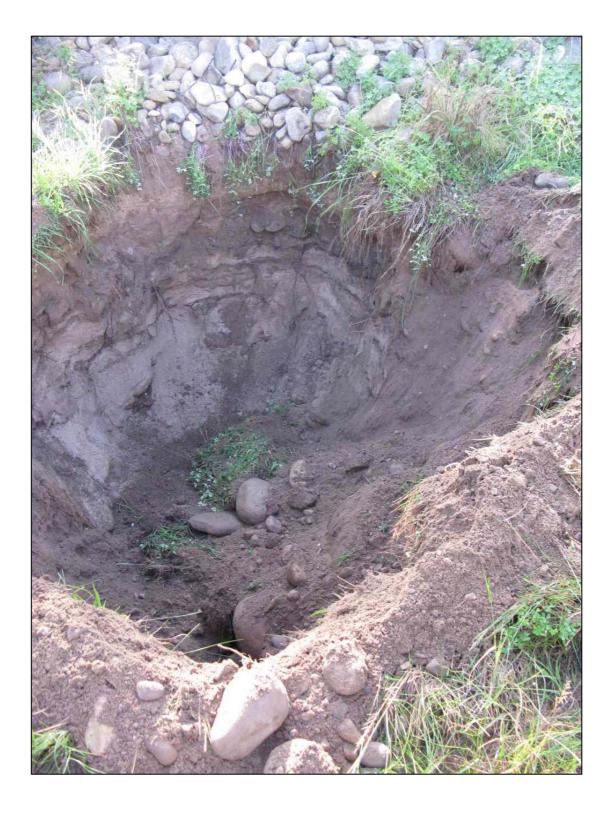


TP VV8

	SOIL PROFIL	.E
PROJECT: HOLENO: MEIHOD OF INVI	BERG RIVER - VOELVLEI DAM PIPELIN VV9 ESTIGATION : DIGGER/LOADER	E PROJECT NO: 119410 DATE: 05/07/2011 GPS COORDS: 1054Y; 3689536X
	DEPTH (m) DES	SCRIPTION
O 0.4-3.2m	Topsoil. : 0.40	loose, intact, slightly silty, fine to medium sand. brown, medium dense, layered, slightly silty, fine to
	Note: No refusal.	
		NOT TO SCALE
O DISTURBED SAM		 ✓ WATER TABLE ¥ PERCHED WATER TABLE

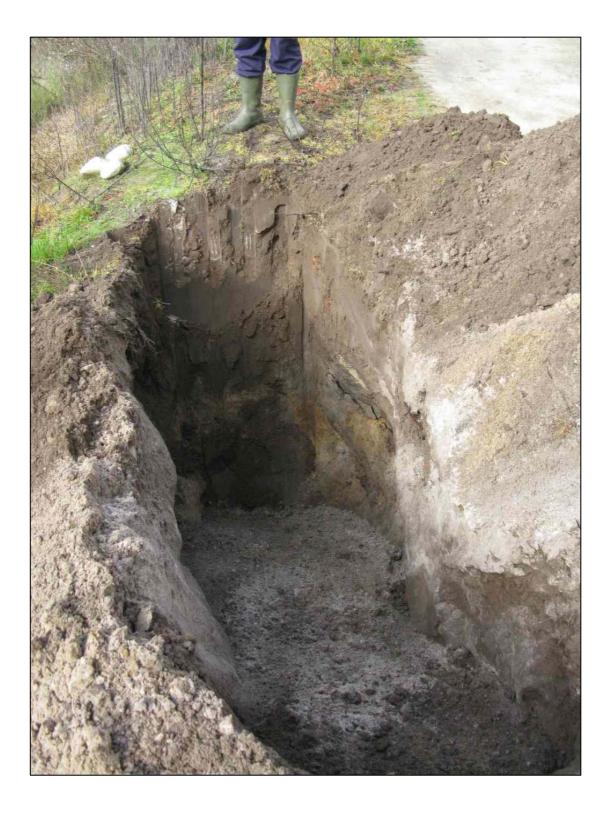


	SOIL PROFI	_E
PROJECT: HOLENO: MEIHOD OF INVE	BERG RIVER - VOELVLEI DAM PIPELIN VV10 ESTIGATION : DIGGER/LOADER	TE PROJECT NO: 119410 DATE: 05/07/2011 GPS COORDS: 1888Y; 3689201X
	DEPTH (m) DE	SCRIPTION
C 0.2-2m	0.20 Roots. CLAYEY SILTY SAND Moist, pinkish clayey, silty fine to medium sand. Alluvium : : <tr< th=""><th>brown, blotched light grey, very stiff, fissured, rown, highly weathered, highly fractured, very soft</th></tr<>	brown, blotched light grey, very stiff, fissured, rown, highly weathered, highly fractured, very soft
O DISTURBED SAM		 ✓ WATER TABLE ¥ PERCHED WATER TABLE



TP VV10

	SOIL PROFILE				
PROJECT: HOLE NO :	BREEDE RIVER PIPELINE	PROJECTNO: 11941 DATE: 13/6/2011			
MEIHOD OF INVE		COORDINATES: X: 3699555 Y: -24850			
	DESCRIPTI	ON			
$\begin{array}{c} : 0 : : 0 : : 0 : : 0 : : 0 : : 0 : : 0 : : 0 : : 0 : : 0 : : : : 0 : : : : 0 : : : 0 : : : 0 : : : 0 :$	grey with depth, loose to medium dense, and gravelly, fine to medium sand. Bould Alluvium.	, layered, very slightly silty, bouldery ders up to 700mm maximum diameter.			
NOTTO SCALE					
O DISTURBED SAM	O DISTURBED SAMPLE \underline{V} WATER TABLE				
[] UNDISTURBED S/	AMPLE <u>¥</u> P	ERCHED WATER TABLE			

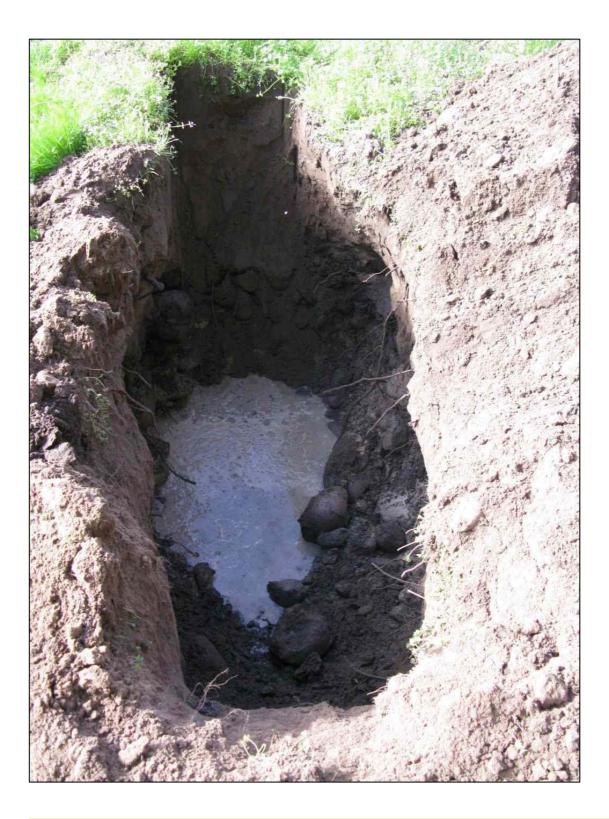


SOIL PROFILE				
PRO JECT:	BREEDE RIVER PIPELINE	PROJECTNO: 11941		
HOLE NO:	TP MP 2	DATE: 13/6/2011		
MEIHOD OF INVI	MEIHOD OF INVESTIGATION : Digger/loader COORDINATES: X: 36 Y: -24			
	DESCRIPTION			
: : : 0 : : : 0 : : 0 : : 0 : : 0 : : 0 : :	BOULDERY GRAVELLY SAND Slightly moist to moist, greyish brown, loose to medium dense, layered, very slightly silty and organic, gravelly and bouldery, fine to medium sand. Numerous grass roots to 0.2m and fine roots throughout. Alluvium. 0::0: 6 <			
: 0 : : 0 : : 0 : : 0				
: 0 : : 0 : : : 0 : : : 0 : : 0 : : : 0 : : : 0 : : 0 : : 0 : : 0	medium to coarse sand with medium sub re up to 800mm maximum dimension. Alluviu	ounded gravel. Boulders		
	NOTE: Massive collapse of sidewalls of pit. Continuous collapse preventing deeper excavation.			
NOT TO SCALE				
O DISTURBED SAMPLE <u>V</u> WATER TABLE				
[] UNDISTURBED S	[] UNDISTURBED SAMPLE \underline{Y} PERCHED WATER TABLE			

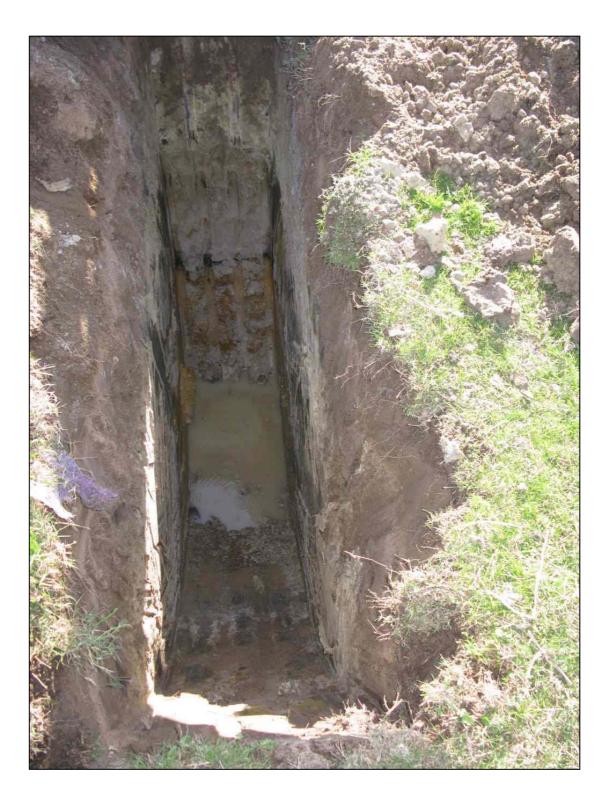
SOIL PROFILE				
PROJECT:	BREEDE RIVER PIPELINE	PROJECT NO: 11941		
HOLE NO:	TP MP 3	DATE : 13/6/2011		
MEIHOD OF INVI	ESTIGATION : Digger/loader	COORDINATES: X: 3699649 Y: -23891		
	DESC	RIPTION		
: 0 : : 0 : : 0 : : 0 : : 0 : : : 0 : 0 : : 0 : : : 0 : 0 :	BOULDERY GRAVELLY SAND Slig to medium dense, layered, very slig bouldery, fine to medium sand. Nu fine roots throughout. Alluvium.	ghtly moist to moist, greyish brown, loose ghtly silty and organic, gravelly and umerous grass roots to 0.2m and 'n and light greyish brown, medium dense, ith medium sub rounded gravel. Alluvium.		
O DISTURBED SAMPLE \underline{V} WATER TABLE				
[] UNDISTURBED S		¥ PERCHED WATER TABLE		

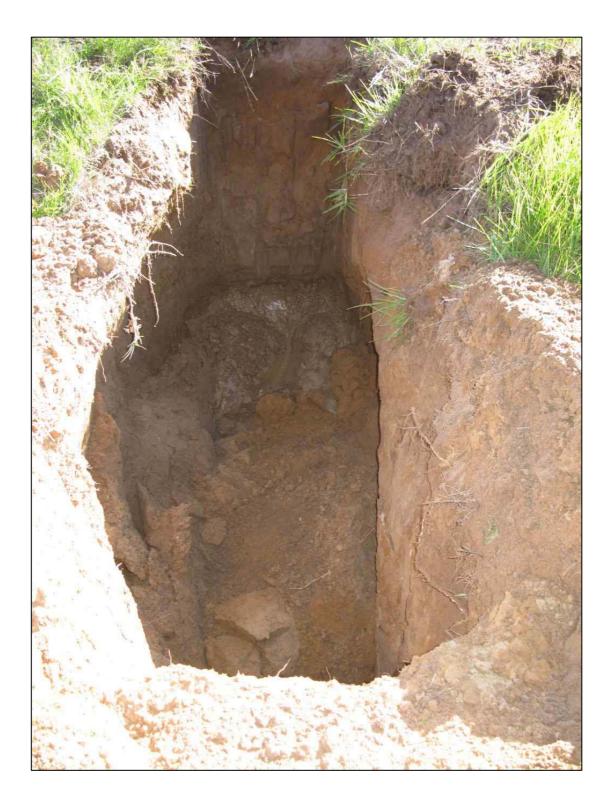
R.A. Bradshaw & Associates cc – 29 July 2011

SOIL PROFILE				
PROJECT: HOLE NO : MEIHOD OF INVI	BREEDE RIVER PIPELINE TP MP 4 STIGATION : Digger/loader		PROJECT NO: DATE : COORDINATES :	11941 13/6/2011 X: 3699569 Y: -23413
	DES	CRIPTION		
O 0.9-1.6m	BOULDERY GRAVELLY SAND S to medium dense, layered, very s bouldery, fine to medium sand. fine roots throughout. Alluvium.	slightly silty and Numerous gra eyish brown an with coarse lay	d organic, gravelly ss roots to 0.2m a d light brown, mea rers and very minc	and and dium or scattered
	2.10			
	NOTE: Massive collapse of of pit.	sidewalls of pir	t prevented deepe	
O DISTURBED SAM		V WATER T. ¥ PERCHEE	ABLE) WATER TABLE	


R.A. Bradshaw & Associates cc – 29 July 2011

SOIL PROFILE				
PRO JECT:	BREEDE RIVER PIPELINE	PROJECT NO: 11941		
HOLE NO:	TP MP 5	DATE : 13/6/2011		
MEIHOD OF INV	ESTIGATION : Digger/loader	COORDINATES: X: 3699611 Y: -22530		
	DESC	RIPTION		
: : : : : : : : : : : : : : : : : : : : : : : : O : O : 0	gravelly, silty fine to medium sand.	grey, loose, intact, slightly organic and Fine roots. Alluvium/topsoil. htly moist, light greyish brown, medium		
0 : 0 : 0 : 0 : 0 0 : 0 : 0 : 0 :	dense, layered, bouldery medium t sandy matrix. Alluvium.	o coarse gravel with a minor coarse		
O/:O:/:0 :/:O/:O O/:O:/:0 :/:O:/:0 :/:O:/:0 :/:O:/:0 :/:O:/:0 O/:O:/:0 :/:O:/:0 :/:O:/:0	0:0:0:10 1.15 0/:0:/:0 CLAYEY SANDY GRAVEL Wet, yellowish brown, dense, layered, medium :/:0:/:0/: to coarse sub rounded gravel in a clayey sandy matrix. Alluvium. 0/:0:/:0 :/:0:/:0/: 0/:0:/:0 :/:0:/:0/: 0/:0:/:0 :/:0:/:0/: 0/:0:/:0 :/:0:/:0/: 0/:0:/:0 :/:0:/:0/: 0/:0:/:0 :/:0:/:0/: 0/:0:/:0 :/:0:/:0/:			
	NOTE: Machine refusing on gr Minor collapse of sidev Only soil matrix sample	valls of pit.		
O DISTURBED SAMPLE ✓ WATER TABLE [] UNDISTURBED SAMPLE ¥ PERCHED WATER TABLE				


SOIL PROFILE			
PRO JECT:	BREEDE RIVER PIPELINE	PROJECTNO: 11941	
HOLE NO:	TP MP 6	DATE: 13/6/2011	
MEIHOD OF INVI	ESTIGATION: Digger/loader	COORDINATES: X: 3699610 Y: -22091	
	DESCRIPT	ON	
: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :	SILTY SAND Moist, dark brownish grey, gravelly, silty fine to medium sand. Fine		
: :: :: 0:0:0 :0:0 0:0:0 :0:0 :0:0 :0:0	dense, layered, bouldery medium to coa sandy matrix. Alluvium.		
: 0 : 0 0 : 0 : 0 : 0 : 0 0 : 0 : 0 : 0 : 0 0 : 0 :	BOULDERY SANDY GRAVEL Wet, light dense, layered, medium to coarse sub r boulders up to 600mm maximum dimen medium to coarse sandy matrix. Alluviur	ounded gravel and scattered ision in a slightly clayey and silty,	
	NOTE: Sidewalls of pit collapsing an deeper excavation. Water sample taken for chen	nd soil 'running' into pit prevented nical analysis. NOT TO SCALE	
O DISTURBED SAMPLE \underline{V} WATER TABLE			
[] UNDISTURBED S.	[] UNDISTURBED SAMPLE $\underline{4}$ PERCHED WATER TABLE		


SOIL PROFILE					
PROJECT:	BREEDE RIVER PIPELINE	PROJECTNO: 11941 DATE: 13/6/2011			
HOLE NO: TP MP 7 DATE: 13/6/. METHOD OF INVESTIGATION: Digger/loader COORDINATES: X: Y: Y: Y: Y:					
	DESCRI	IPTION			
: : : : : : : : : : : : : : : : : : : : : : . . : ! .	SILTY SAND Moist, dark brownish g gravelly, silty fine to medium sand. F	rey, loose, intact, slightly organic and fine roots. Alluvium/topsoil.			
O 0.4-1.7m	SAND Very moist to wet, light grey sa	and with black blotching in places, loose htly silty, fine to medium sand. Alluvium.			
: 0 : : 0 : : : : 0 : : : 0 : : 0 : : : : 0 : : : 0 : : 0 : : : : : 0 : :	GRAVELLY SAND Wet, light grey, me sand with minor, medium to coarse s	edium dense, layered, fine to medium sub rounded gravel. Alluvium.			
	NOTE: Water inflow and massiv deeper excavation. Water sample taken for c	e collapse of sidewalls of pit prevented			
		NOT TO SCALE			
O DISTURBED SAM	O DISTURBED SAMPLE \underline{V} WATER TABLE				
[] UNDISTURBED S.	AMPLE <u>¥</u>	PERCHED WATER TABLE			

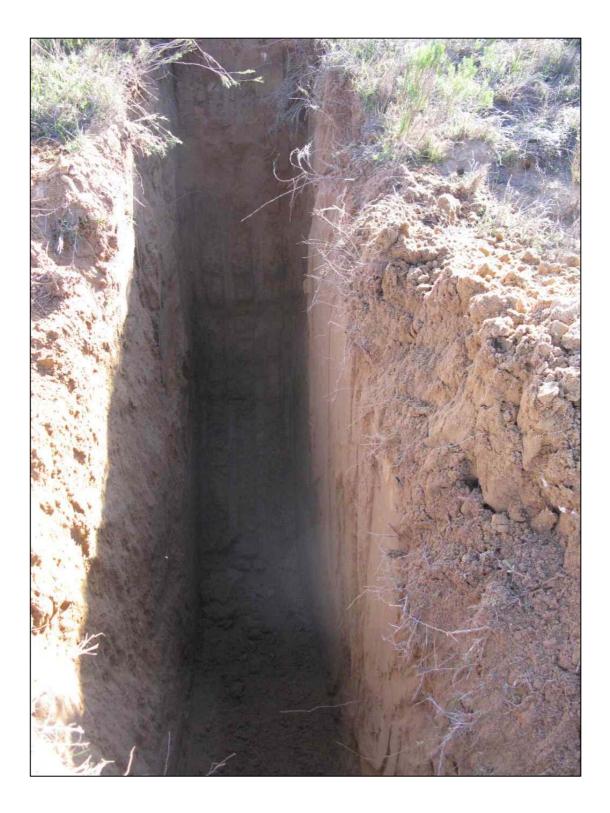
SOIL PROFILE				
PROJECT: H	BREEDE RIVER PIPELINE		PRO JECT NO:	11941
HOLE NO:	IP MP 8		DATE:	13/6/2011
METHOD OF INVEST	IIGATION : Digger/loader		COORDINATES:	X: 3699137 Y: -20802
	DES	CRIPTION		
: : : : : : : : : : : : : : : : : : : : : : : : :	SILTY SAND Moist, dark brownis gravelly, silty fine to medium san			anic and
: : : : : :/ : : / : : / : / : : / : : /	0.60 CLAYEY SAND Slightly moist, lig fine to medium sand. Alluvium.			
$\frac{\cancel{4}}{\cancel{2}} 2.15m \qquad : / : : / : : / : : : : : : : : : : :$	2.15 SANDY SILTY CLAY Moist to ver stiff, fissured, sandy, silty clay. A		lotched and staine	ed brown, very
:/::/[/:] O/:0:/:O :/:0:/:O/: O/:0:/:O :/:0:/:O/:	:/:O:/:O/: medium to coarse, sub rounded gravel in a clayey sandy matrix. Alluvium. O/:O:/:O			
	NOTE: Practical depth limite Water sample taken		nalysis.	
NOT TO SCALE				
O DISTURBED SAMPLE \underline{V} WATER TABLE				
UNDISTURBED SAMPLE ¥ PERCHED WATER TABLE				

	SOIL PROFILE	Ξ
PRO JECT:	BREEDE RIVER PIPELINE	PROJECTNO: 11941
HOLE NO:	TP MP 9	DATE: 13/6/2011
METHOD OF INV	/ESTIGATION: Digger/loader	COORDINATES: X: 3699915 Y: -20480
	DES	CRIPTION
O 0.2-1.0m	with depth, then light grey, loose to generally fine sand. Alluvium.	idewalls of trench prevented deeper
		NOT TO SCALE
O DISTURBED SA	MPLE	V WATER TABLE
[] UNDISTURBED		<u>¥</u> PERCHED WATER TABLE

SOIL PROFILE				
PRO JECT: HOLE NO :	BREEDE RIVER PIPELINE TP MP 10	PROJECT NO: 11941 DATE: 13/6/20)11	
METHOD OF INVI	ESTIGATION : Digger/loader		3698503 -19189	
	D	DESCRIPTION		
O 0.45-0.7n : V : : : : : : : : : : : : : : : : :	sand. Colluvium. Scattered F along basal contact. 0.45 CLAYEY SANDY SILT Moist, o 0.70 silt with fine, gravel-size fragm SHALE Light brown and white completely weathered, highly in places, to very stiff soil. Ma	se, layered, very slightly silty, fine to mediu Port Jackson roots. Ferricrete and sandsto orange brown, very stiff, fissured, clayey, sa nents of highly weathered shale. Colluviur e, highly weathered grading locally to fractured, very soft rock shale grading, ilmesbury Group.	one andy	
	NOTE: No refusal.			
		NOT TO SCALE		
O DISTURBED SAM		 ✓ WATER TABLE ¥ PERCHED WATER TABLE 		

SOIL PROFILE				
PRO JECT: HO LE NO :	BREEDE RIVER PIPELINE		PROJECT NO: DATE :	11941 13/6/2011
MEIHOD OF INV			COORDINATES	
	DES	SCRIPTION		
O :O : : O : O : O : O : O : O : O : O / / / / / /	 2.30 	il in a slightly s dogenic. ite, streaked lig veathered, lead	andy matrix. Scatt ght brown, very stif ched siltstone.	tered f, faintly
rock siltstone. Malmesbury Group.				
O DISTURBED SA	MPLE	<u>V</u> WATER T	ABLE	
[] UNDISTURBED	SAMPLE	<u>¥</u> perchei	O WATER TABLE	

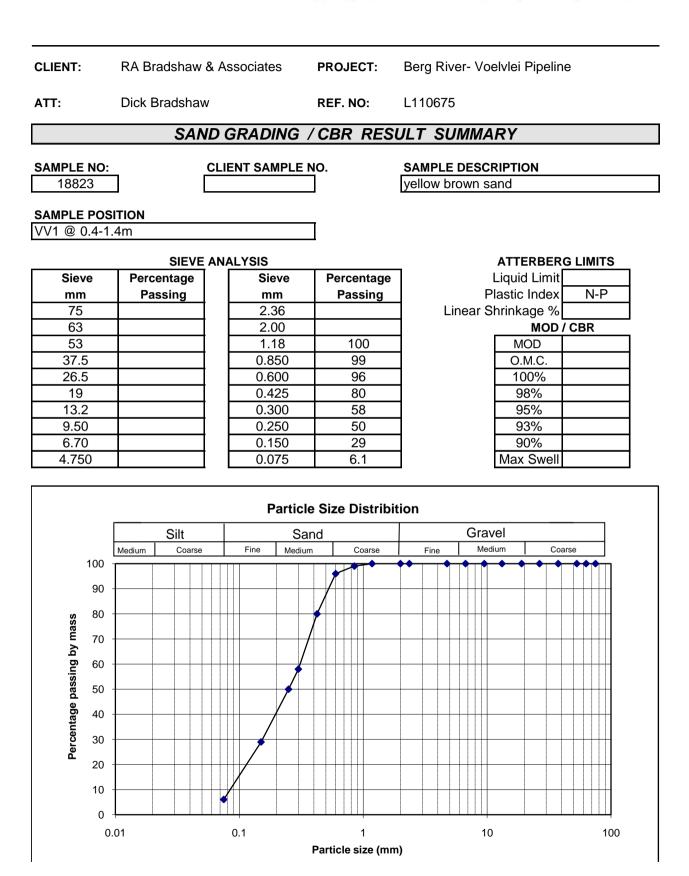
Western Cape Surface Water Feasibility Studies Geotechnical Investigation



	SOIL PROFIL	Ξ		
PRO JEC T: HO LE NO :	BREEDE RIVER PIPELINE		PRO JECT NO : DATE :	11941
MEIHOD OF INV			COORDINATES	
	E HOAHON . Diggel/loadel			Y: -19447
	DES	CRIPTION		
O 1.0-2.0m	/ clayey, fine to medium ferricrete / /	and yellowish ravel. Pedog hered to 1.2n soft becoming (Group.	h brown, very stiff, la genic. n then, highly to ma g soft to medium h	ayered, oderately
			NOT TO SCALE	
O DISTURBED SAM	PLE	V WATER	TABLE	
[] UNDISTURBED S	AMPLE	<u>¥</u> perche	D WATER TABLE	

Western Cape Surface Water Feasibility Studies -Geotechnical Investigation

	SOIL PROF	LE	
PROJECT:	BREEDE RIVER PIPELINE	PROJECT NO:	11941
HOLE NO : MEIHOD OF INVE	TP MP 13 STIGATION : Digger/loader	DATE : COORDINATES :	13/6/2011 X: 3696455 Y: -19089
	DI	ESCRIPTION	
O 0.3-1.5m	1.50 1.50 CLAYEY SILTY SAND Moist, ta clayey, silty fine to medium sat wash. 2.80 CLAYEY SANDY GRAVEL Moist, ta 3.00 clayey fine to medium sand wi Alluvial wash.	I tan with depth, loose to medium o o medium sand. Alluvial wash. an, medium dense to dense, layere nd with rare scattered medium gra st, orange brown, very stiff, slightly h medium sub rounded gravel. cal depth limit of machine.	ed, veryslightly vel. Alluvial
		NOT TO SCALE	
O DISTURBED SAM	PLE	<u>V</u> water table	
[] UNDISTURBED S.	AMPLE	¥ PERCHED WATER TABLE	



Western Cape Surface Water Feasibility Studies Geotechnical Investigation

APPENDIX C

RESULTS OF LABORATORY TESTS ON SOIL SAMPLES

CLIENT:	LIENT: RA Bradshaw& Associate 17 Midwood Avenue Newlands		tes	PRO	JECT:	Berg River-	Voelvlei Pipe	line
	7700			DATE	:	23-06-2011		
ATT:	Dick Brads			REF:		L110675		
		AS	STM D4	422 SIEV	E ANALY	SIS		
DES		ellow olive cl	avev sand		l s/	AMPLE NO. :	18824	
	POSITION :					AMPLE NO. :		
Sieve A	analysis	Percent Passing		Hydromet	er Analysis		SCS Dispe	ersion Test
	75.00			Diameter of	Percentage of		Diameter of	Percentage of
	63.00			particle (mm)	soil suspension (%)		particle (mm)	soil suspension (%)
	53.00			0.0727	26			
	37.50			0.0366	23			
	26.50			0.0185	19			
	19.00			0.0097	18			
SIEVE SIZE (mm)	13.20			0.0034	16			
<u>د</u>	9.50			0.0024	16			
SIZE	6.70			0.0014	16			
Щ	4.75						-	1
Ē	2.36					cific Gravity:		
0	2.00			Init	tial Moisture C	ontent (%) :		
	1.18	100				pH :		
	0.600	98			Conduct	ivity mS/m :		J
	0.425	92			Particle Siz	e Distributio	n	
	0.300	80	100				*	┑┥┥┍ ╖╷│
	0.150	54	90 -			/		
A	0.0750 tterberg Limit	27	80 — 70 —			1		
	<u>1H1 A2. A3 &</u>		Percentage Passing					
Liqui	d Limit	17	ge Pa:		4			
Plasti	c Index	4	UC centra					
Linear S	Shrinkage	2.0	a 40 + 30 +					
MOD AASH	TO ; C.B.R. : A7 & A8	TMH1	20	• • • • •	• • • • •			
MOD AAS	HTO (Kg/m³)		10 -					
O.M.(C. (%)		0	0.010	0.100	1.000	10.000	100.000
C.B.R. @	100% Comp.				Partie	1.000 cle Size (mm)		
C.B.R. @	98 % Comp.				Tabulated	Summary		Percentage
C.B.R. @ 95 % Comp.			Gravel : Percentage - 4.75 mm				0	
	93 % Comp.			Sand : Percentage - 4.75mm and + 0.075mm				73
	90 % Comp.			Silt : Percentage - 0.075mm and + 0.002mm				11
Swell (max)%			Clay : Percent	tage - 0.002mn	1		16

The above test results are pertinent to the samples received and tested only.

While the tests are carried out according to recognized standards Geoscience shall not be liable for erroneous testing or reporting thereof. This report may not be reproduced except in full without prior consent of Geoscience.

CLIENT:	IENT: RA Bradshaw& Associat 17 Midwood Avenue Newlands		tes	PRO	JECT:	Berg River-	Voelvlei Pipe	line
	7700			DATE	:	23-06-2011		
ATT:	Dick Brads	haw		REF:		L110675		
		AS	STM D	422 SIEV	E ANALY	SIS		
DES		yellow olive gv	l silty clay] 6/	AMPLE NO. :	18825	
DES		VV3 @ 0.3-1.1			-	AMPLE NO. :	10025	
		Percent	1					
Sieve A	nalysis	Percent Passing		Hydromet	er Analysis		SCS Disp	ersion Test
	75.00			Diameter of	Percentage of		Diameter of	Percentage of
	63.00			particle (mm)	soil suspension (%)		particle (mm)	soil suspension (%)
	53.00			0.0663	38			(707
	37.50			0.0336	36			
	26.50	100		0.0169	34			
	19.00	89		0.0090	28			
(E	13.20	88		0.0032	24			
SIEVE SIZE (mm)	9.50	88		0.0023	23			
IZE	6.70	85		0.0014	20			
ы Ш	4.75	82						_
≥ E<	2.36	70			Spe	cific Gravity:		
N	2.00	68		Init	tial Moisture C	ontent (%) :		
	1.18	64				pH :		
	0.600	57			Conduct	ivity mS/m :		
	0.425	54			Particla Siz	e Distributio	n	
	0.300	50	100 -					
	0.150	44	90 -					
	0.0750	39	80 -					
At	tterberg Limi	ts :	70 -					
TM	IH1 A2. A3 &		is 60					
Liquic	d Limit	35	de Pa					
Plastic	Index	17						
Linear S	hrinkage	8.0	<u>a</u> 40 – 30 –		• • •			
MOD AASHT	TO ; C.B.R. : A7 & A8	TMH1	20 -	•••				
MOD AASI	HTO (Kg/m³)		10 -					
O.M.0			0	0.010	0 100	1.000	10.000	100.000
C.B.R. @ 1	100% Comp.		0.001	0.010	Partie	1.000 cle Size (mm)	10.000	100.000
C.B.R. @ 98 % Comp.]	Tabulated Summary				Percentage	
	95 % Comp.			Gravel : Percentage - 4.75 mm				18
	93 % Comp.		1	Sand : Percentage - 4.75mm and + 0.075mm				43
	90 % Comp.			Silt : Percentage - 0.075mm and + 0.002mm				17
	max)%			Clay : Percent	tage - 0.002mn	n		22

The above test results are pertinent to the samples received and tested only. For Geoscience While the tests are carried out according to recognized standards Geoscience shall not be liable for erroneous testing or reporting thereof. This report may not be reproduced except in full without prior consent of Geoscience.

CLIENT: RA Bradshaw& Associate 17 Midwood Avenue Newlands		tes	PRO	JECT:	Berg River- Voelvlei Pipeline			
	7700			DATE	Ξ:	23-06-2011		
ATT:	Dick Bradsh			REF:		L110675		
		AS	STM D4	422 SIEV	E ANALY	SIS		
DES	SCRIPTION :	t yellow browr	n clayey sa	nd] s/	AMPLE NO. :	18826	
	POSITION :				CLIENT SA	AMPLE NO. :		
Sieve A	analysis	Percent Passing		Hydromet	er Analysis		SCS Dispersion Test	
	75.00			Diameter of	Percentage of		Diameter of	Percentage of
	63.00			particle (mm)	soil suspension (%)		particle (mm)	soil suspension (%)
	53.00			0.0671	51			
	37.50			0.0343	45			
	26.50	100		0.0175	38			
_	19.00	99		0.0093	29			
(mn	13.20	99		0.0034	19			
<u>с</u> ш	9.50	99		0.0024	16			
SIEVE SIZE (mm)	6.70	99		0.0014	13			
Щ.	4.75	99		r				1
E	2.36	98			_	cific Gravity:		
0)	2.00	98		Ini	tial Moisture C			
	1.18	89				рН :		
	0.600	78	[Conduct	ivity mS/m :		
	0.425	72			Particle Siz	e Distributio	n	
	0.300	67	100				*****	* * * **
	0.150	58	90 -					
	0.0750	53	80 -					
	tterberg Limit							
	<u>1H1 A2. A3 &</u>		Passing —		x	Z		
	d Limit	38	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
	c Index	9	Gentage - 00 - 00 - 00 - 00 - 00 - 00 - 00 -					
Linear S	Shrinkage	4.0	30					
MOD AASHT	TO ; C.B.R. : A7 & A8	ТМН1	20					
MOD AASI	HTO (Kg/m³)		10					
O.M.(C. (%)		0	0.010	0.100	1.000	10.000	100.000
	100% Comp.		0.001	0.010	Partie	1.000 cle Size (mm)	10.000	100.000
C.B.R. @ 98 % Comp.				Tabulated	Summary		Percentage	
C.B.R. @ 95 % Comp.			Gravel : Perce	entage - 4.75 m	ım		1	
	93 % Comp.			Sand : Percentage - 4.75mm and + 0.075mm				46
	90 % Comp.			Silt : Percentage - 0.075mm and + 0.002mm				38
Swell (max)%				Clay : Percent	tage - 0.002mn	า		15

The above test results are pertinent to the samples received and tested only.

While the tests are carried out according to recognized standards Geoscience shall not be liable for erroneous testing or reporting thereof. This report may not be reproduced except in full without prior consent of Geoscience.

		ENT: RA Bradshaw& Associate 17 Midwood Avenue Newlands			JECT:	Berg River-	·	
ΔΤΤ·	7700			DATE	:	23-06-2011		
	Dick Brads			REF:		L110675		
		A	STM D	422 SIEV	E ANALY	SIS		
DESC	CRIPTION :	red brown sar	dv clav		s,	AMPLE NO. :	18827	
		VV4A @ 0.4-0			CLIENT S	AMPLE NO. :		
Sieve An	alysis	Percent Passing		Hydromet	er Analysis		SCS Dispe	ersion Test
	75.00			Diameter of	Percentage of		Diameter of	Percentage of
	63.00		1	particle (mm)	soil suspension (%)		particle (mm)	soil suspension (%)
	53.00			0.0648	68			
	37.50			0.0324	66			
	26.50			0.0162	65			
	19.00			0.0084	63			
(m	13.20			0.0029	62			
۳ ۳	9.50			0.0021	60			
SIZE	6.70	100		0.0012	59			
SIEVE SIZE (mm)	4.75	98						7
Ц	2.36	94			_	cific Gravity:		
0	2.00	93		Init	tial Moisture C			4
	1.18	90				pH :		
	0.600	80	·		Conduct	ivity mS/m :		
	0.425	77			Particle Siz	e Distribution	n	
	0.300 0.150	74 72	100					+ + + + +
	0.150	69	90 -					
			80 +					
	erberg Limi		70 +		· · · · · · · · · · · · · · · · · · ·			+ + + + + + + + + + + + + + + + + + + +
 Liquid	<u>H1 A2. A3 &</u> Limit	<u>52</u>	- 00 ^{la} si					+ + + + + + + + + + + + + + + + + + + +
Plastic		26	Percentage Passing					
			- 40 -					
Linear Sh	ппкауе	13.0	30 -					
MOD AASHTO	O ; C.B.R. : A7 & A8	TMH1	20					
MOD AASH	TO (Kg/m³)		10 -					
O.M.C.	. (%)		0	0.010	0.100	1.000	10.000	100.000
C.B.R. @ 10	00% Comp.				Parti	1.000 cle Size (mm)		
C.B.R. @ 98	8 % Comp.				Tabulated	Summary		Percentage
C.B.R. @ 95 % Comp.			Gravel : Perce	entage - 4.75 m	ım		2	
C.B.R. @ 93]	Sand : Percentage - 4.75mm and + 0.075mm			nm	29
C.B.R. @ 90			1	Silt : Percentage - 0.075mm and + 0.002mm				9
Swell (n			1	Clay : Percent	tage - 0.002mn	n		60

The above test results are pertinent to the samples received and tested only. For Geoscience While the tests are carried out according to recognized standards Geoscience shall not be liable for erroneous testing or reporting thereof. This report may not be reproduced except in full without prior consent of Geoscience.

CLIENT:	ENT: RA Bradshaw& Associat 17 Midwood Avenue Newlands		tes	PRO	JECT:	Berg River-	Voelvlei Pipe	line
	7700			DATE	:	23-06-2011		
ATT:	Dick Brads			REF:		L110675		
		AS	STM D4	422 SIEV	E ANALY	SIS		
DES		vellow olive av	l silty sand	1	l s/	AMPLE NO. :	18828	
	POSITION :					AMPLE NO. :		
Sieve A	analysis	Percent Passing		Hydromet	er Analysis		SCS Dispe	ersion Test
	75.00			Diameter of	Percentage of		Diameter of	Percentage of
	63.00			particle (mm)	soil suspension (%)		particle (mm)	soil suspension (%)
	53.00			0.0760	3			(707
	37.50	100		0.0380	2			
	26.50	98		0.0192	2			
	19.00	97		0.0099	2			
(Le	13.20	88		0.0035	2			
SIEVE SIZE (mm)	9.50	79		0.0025	2			
SIZE	6.70	66		0.0014	2			
ш	4.75	54					-	•
_ □	2.36	28			•	cific Gravity:		
ഗ	2.00	25		Init	tial Moisture C	ontent (%) :		
	1.18	13				рН :		-
	0.600	8			Conduct	ivity mS/m :]
	0.425	6			Particle Siz	e Distributio	n	
	0.300	5	100 T					
	0.150	4	90 —					
	0.0750	3	80 -				/	
A	tterberg Limit	s :	_ 70 -					
	1H1 A2. A3 &		billse 60					
	d Limit	12	a 850 –					
Plasti	c Index	2	Percentage Passing					
Linear S	Shrinkage	1.0	30 -					
MOD AASH	TO ; C.B.R. : A7 & A8	TMH1	20 —			x	*	
MOD AAS	HTO (Kg/m ³)		10 -			-++4		
O.M.0	C. (%)		0	0.010	0.100	1.000	10.000	100.000
C.B.R. @	100% Comp.			0.010	Partie	cle Size (mm)	10.000	100.000
	98 % Comp.				Tabulated	Summary		Percentage
C.B.R. @ 95 % Comp.			Gravel : Perce	entage - 4.75 m	ım		46	
	93 % Comp.			Sand : Percer	ntage - 4.75mm	and + 0.075r	nm	51
	90 % Comp.			Silt : Percenta	age - 0.075mm	and + 0.002m	nm	1
	(max)%			Clay : Percen	tage - 0.002mn	l		2
								-

The above test results are pertinent to the samples received and tested only.

While the tests are carried out according to recognized standards Geoscience shall not be liable for erroneous testing or reporting thereof. This report may not be reproduced except in full without prior consent of Geoscience.

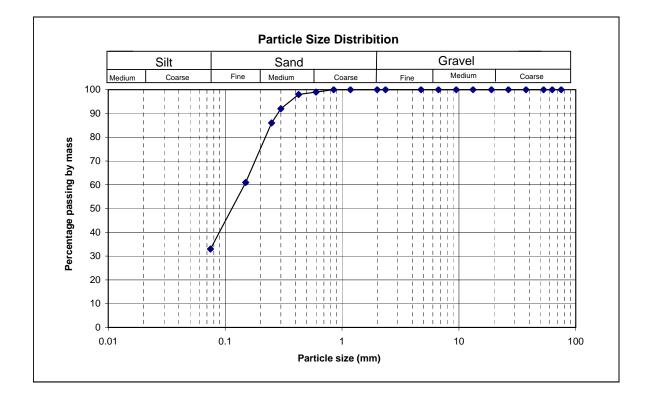
CLIENT:	 RA Bradshaw& Associates 17 Midwood Avenue Newlands 		tes	PRO	JECT:	Berg River-	Voelvlei Pipe	line
	7700			DATE	≣:	23-06-2011		
ATT:	Dick Brads	haw		REF:		L110675		
		AS	STM D	422 SIEV	E ANALY	SIS		
		dark alive aan	مار مامیر]	MPLE NO. :	40000	
DE		dark olive san VV5 @ 0.5-1.8				AMPLE NO. : AMPLE NO. :	18829	
	roomon.			(
Sieve A	analysis	Percent Passing		Hydromet	er Analysis		SCS Dispo	ersion Test
	75.00			Diameter of	Percentage of		Diameter of	Percentage of
	63.00			particle (mm)	soil suspension (%)		particle (mm)	soil suspension (%)
	53.00			0.0640	66			
	37.50			0.0320	65			
	26.50			0.0160	63			
	19.00			0.0083	62			
(E	13.20			0.0029	62			
: (س	9.50	100		0.0020	60			
IZE	6.70	99		0.0012	59			
ы Ш	4.75	98						
SIEVE SIZE (mm)	2.36	92			Spee	cific Gravity:		
N	2.00	91		Init	tial Moisture C	ontent (%) :		
	1.18	86				pH :		
	0.600	82			Conduct	ivity mS/m :		
	0.425	79			Particle Siz	e Distributio	n	
	0.300	76	100 T				╵╵	• • • • • •⊓∩
	0.150	70	90 -				*	
	0.0750	66	80					
A	tterberg Limi	ts :	70 -					
	1H1 A2. A3 8		Buiss		• • •			
Liquio	d Limit	60	ge Pa					
Plasti	c Index	36	Percentage Passing 					
Linear S	Shrinkage	14.0	<u>لة</u> 40 – 30 –					
	TO ; C.B.R. : A7 & A8	TMH1	20					
	HTO (Kg/m ³)		10 -					
O.M.(C. (%)		0			1 000	10 000	
	100% Comp.		0.001	0.010	0.100 Partic	1.000 cle Size (mm)	10.000	100.000
C.B.R. @	98 % Comp.				Tabulated	Summary		Percentage
C.B.R. @ 95 % Comp.			Gravel : Percentage - 4.75 mm			2		
	93 % Comp.			Sand : Percentage - 4.75mm and + 0.075mm			31	
C.B.R. @	90 % Comp.			Silt : Percentage - 0.075mm and + 0.002mm			6	
Swell ((max)%			Clay : Percent	tage - 0.002mn	1		60

The above test results are pertinent to the samples received and tested only. For Geoscience While the tests are carried out according to recognized standards Geoscience shall not be liable for erroneous testing or reporting thereof. This report may not be reproduced except in full without prior consent of Geoscience.

CLIENT:	RA Bradshaw& Associates 17 Midwood Avenue Newlands		ites	PRO	JECT:	Berg River-	Voelvlei Pipe	line
	7700			DATE	:	23-06-2011		
ATT:	Dick Brads			REF:		L110675		
		A	STM D4	422 SIEV	E ANALY	SIS		
DES	SCRIPTION :	dark olive clay	vey sand		S/	AMPLE NO. :	18830	
		VV6 @ 0.7-1.2			CLIENT SA	AMPLE NO. :		
Sieve A	nalysis	Percent Passing]	Hydromet	er Analysis]	SCS Dispo	ersion Test
	75.00			Diameter of	Percentage of		Diameter of	Percentage of
	63.00			particle (mm)	soil suspension (%)		particle (mm)	soil suspension (%)
	53.00			0.0699	38			
	37.50			0.0349	36			
	26.50			0.0177	35			
	19.00			0.0091	33			
SIEVE SIZE (mm)	13.20	100		0.0032	33			
с) Ш	9.50	99		0.0023	33			
	6.70	99		0.0013	32			
Щ.	4.75	97						1
)E	2.36	93		· · ·		cific Gravity:		-
0)	2.00	93		Init	tial Moisture C	()		4
	1.18	90				pH :		4
	0.600	82 75			Conduct	ivity mS/m :		<u> </u>
	0.425	66			Particle Siz	e Distributio	n	
	0.300	51	100				Ja-landa	
	0.0750	39	90 —					
	tterberg Limit	ts:	80					
Liquio	d Limit	33	de Las					
Plastic	c Index	18	centa centa					
Linear S	Shrinkage	6.0	<u>لة</u> 40 30		• • •			
MOD AASH	TO ; C.B.R. : A7 & A8	TMH1	20					
MOD AAS	HTO (Kg/m³)							
O.M.(C. (%)		0	0.010	0.100	1.000	10.000	100.000
C.B.R. @ '	100% Comp.					cle Size (mm)		
C.B.R. @ 98 % Comp.		ł	Ormal D	Tabulated	-		Percentage	
C.B.R. @ 95 % Comp.		ł	Gravel : Percentage - 4.75 mm				3	
C.B.R. @	93 % Comp.		ļ	Sand : Percentage - 4.75mm and + 0.075mm				58
C.B.R. @	90 % Comp.		ł	Silt : Percentage - 0.075mm and + 0.002mm				6
Swell (max)%		1	Clay : Percent	tage - 0.002mn	۱		33

The above test results are pertinent to the samples received and tested only. For Geoscience While the tests are carried out according to recognized standards Geoscience shall not be liable for erroneous testing or reporting thereof. This report may not be reproduced except in full without prior consent of Geoscience.

CLIENT:	RA Bradsh 17 Midwoo Newlands	aw& Associa d Avenue	tes	PRO	JECT:	Berg River-	Voelvlei Pipe	line
	7700			DATE	:	23-06-2011		
ATT:	Dick Brads			REF:		L110675		
		A	STM D4	422 SIEV	E ANALY	SIS		
DES	SCRIPTION :	yellow olive si	Ity sand		s/	AMPLE NO. :	18831	
		, VV7 @ 1.7-2.			CLIENT SA	AMPLE NO. :		
Sieve A	analysis	Percent Passing]	Hydromet	er Analysis		SCS Dispe	ersion Test
	75.00			Diameter of	Percentage of		Diameter of	Percentage of
	63.00			particle (mm)	soil suspension (%)		particle (mm)	soil suspension (%)
	53.00			0.0685	43			(707
	37.50			0.0347	41			
	26.50			0.0173	40			
	19.00	100		0.0090	38			
Ê	13.20	97		0.0032	37			
SIEVE SIZE (mm)	9.50	96		0.0022	37			
IZE	6.70	95		0.0013	35			
о Ш	4.75	95						
	2.36	93			Spe	cific Gravity:		
<u>v</u>	2.00	93		Init	tial Moisture C	ontent (%) :		
	1.18	92				рН :		
	0.600	89			Conduct	ivity mS/m :		
	0.425	84			Particle Siz	e Distributio	n	
	0.300	75	100 T					• • • • •
	0.150	58	90 -				*****	
	0.0750	44	80 –					
A	tterberg Limit	ts :	70 -			1		
	<u>1H1 A2. A3 &</u>		Buiss 60			/		
Liquid	d Limit	33	B 50					
Plastic	c Index	18						
Linear S	Shrinkage	8.0		• • • • • •				
MOD AASH	TO ; C.B.R. : A7 & A8	TMH1	20 —					
MOD AAS	HTO (Kg/m³)		10 -					
O.M.0	C. (%)		0	0.010	0.100	1.000	10.000	100.000
C.B.R. @ '	100% Comp.				Partie	cle Size (mm)		
C.B.R. @	98 % Comp.				Tabulated	Summary		Percentage
C.B.R. @	95 % Comp.			Gravel : Perce	entage - 4.75 m	nm		5
	93 % Comp.			Sand : Percer	ntage - 4.75mm	and + 0.075r	nm	51
	90 % Comp.			Silt : Percenta	age - 0.075mm	and + 0.002m	1m	8
Swell (max)%			Clay : Percent	tage - 0.002mn	n		36



Max Swell

CLIENT:	RA Bradshaw & Associates		PROJECT:	Breg River Pipeline						
ATT:	Dick Bradshaw		REF. NO:	L110713						
SAND GRADING / CBR RESULT SUMMARY										
SAMPLE NO: CLIENT SAMPLE NO. SAMPLE DESCRIPTION 18893										
SAMPLE POS VV8 @ 1.2-3.]							
	SIEVE A	NALYSIS		-	ATTERBERG LI	MITS				
Sieve	Percentage	Sieve	Percentage		Liquid Limit					
mm	Passing	mm	Passing	P	lastic Index					
75		2.36		Linear S	hrinkage %					
63		2.00]	MOD / CB	R				
53		1.18			MOD					
37.5		0.850	100		O.M.C.					
26.5		0.600	99		100%					
19		0.425	98		98%					
13.2		0.300	92		95%					
9.50		0.250	86]	93%					
6.70		0.150	61]	90%					

0.075

4.750

33.0

Breg River Pipeline

95%

93%

90%

ATT: **Dick Bradshaw** REF. NO: L110713 SAND GRADING / CBR RESULT SUMMARY SAMPLE DESCRIPTION SAMPLE NO: CLIENT SAMPLE NO. 18894 yellow orange silty sand SAMPLE POSITION VV9 @ 0.4-3.2m SIEVE ANALYSIS ATTERBERG LIMITS Percentage Percentage Liquid Limit Sieve Sieve Plastic Index mm Passing mm Passing 75 2.36 Linear Shrinkage % 2.00 MOD / CBR 63 53 1.18 MOD 37.5 0.850 100 O.M.C. 100% 26.5 0.600 99 19 0.425 98 98%

94

88

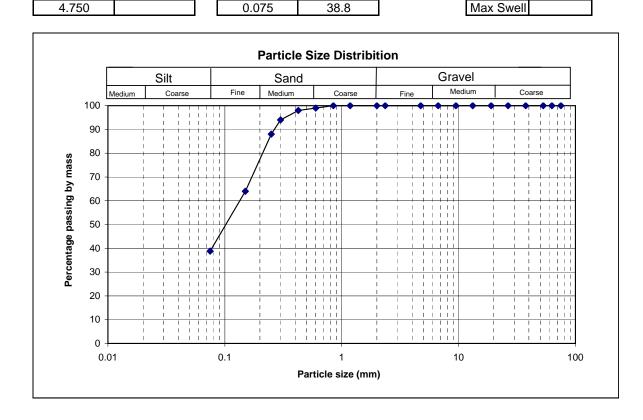
64

0.300

0.250

0.150

PROJECT:


RA Bradshaw & Associates

CLIENT:

13.2

9.50

6.70

				LABOR	ATORI	ES (P	TY) LT	D
CLIENT:	RA Bradsh 17 Midwoo Newlands	aw & Associa d Avenue	ates	PRO	JECT:	Bewrg Rive	r Pipeline	
	7702			DATE	E:	11-07-2011		
ATT:	Dick Brads	haw		REF:		L110713		
		A	STM D4	422 SIEV	E ANAL Y	'SIS		
DE	SCRIPTION :	It red sandy si	Ity clay		s	AMPLE NO. :	18895	
		VV10 @ 0.2-2			CLIENT S	AMPLE NO. :		
Sieve A	Analysis	Percent Passing		Hydromet	er Analysis		SCS Disp	ersion Test
	75.00			Diameter of	Percentage of soil suspension		Diameter of	Percentage of soil suspension
	63.00			particle (mm)	(%)		particle (mm)	(%)
	53.00			0.0680	53			
	37.50			0.0343	48			
	26.50			0.0173	47			
	19.00			0.0090	45			
С Е	13.20			0.0032	40			
<u>د</u>	9.50			0.0023	40			
SIEVE SIZE (mm)	6.70			0.0013	40			
υ Ψ	4.75							1
_ E<	2.36					cific Gravity:		-
S	2.00			Ini	tial Moisture C	content (%) :		-
	1.18	100	-			рН :		-
	0.600	99			Conduct	tivity mS/m :]
	0.425	99			Particle Si	ze Distributio	'n	
	0.300	95	100		<u> </u>		♦● । - । ● । ● । ● ●	• • • • •
	0.150	74	90		· · · · · · · · · · · · · · · · · · ·	·/····	· · · · · · · · · · · · · · · · · · ·	
	0.0750		80 70			Y		
-	<i>MH1 A2, A3 &</i> d Limit	31	07 06 06 06 07 07 07 07 07 07 07 07 07 07	<u> </u>			<u> </u>	
-	c Index		- 50				+ + + + + + + + + + + + + + + + + + +	
		12	a a 40 - ◆		1		· · · · · · · · · · · · · · · · · · ·	
Linear	Shrinkage	6.0	30					
MOD AASH	ITO ; C.B.R. : A7 & A8	TMH1	20		<u> </u>		<u> </u>	
MOD AAS	HTO (Kg/m³)							
O.M.	C. (%)		0	0.010	0.100	1.000	10.000	100.000
C.B.R. @	100% Comp.				Parti	cle Size (mm)		
C.B.R. @	98 % Comp.				Tabulated	Summary		Percentage
C.B.R. @	95 % Comp.]	Gravel : Perce	entage - 4.75 m	ım		0
	93 % Comp.]	Sand : Percer	ntage - 4.75mm	and + 0.075r	nm	44
	90 % Comp.]	Silt : Percenta	age - 0.075mm	and + 0.002m	m	16
-	(max)%]	Clay : Percent	tage - 0.002mn	ı		40

⇒

B

For Geoscience:

K

The above test results are pertinent to the samples received and tested only. For Geoscier While the tests are carried out according to recognized standards Geoscience shall not be liable for erroneous testing or reporting thereof. This report may not be reproduced except in full without prior consent of Geoscience.

Breede River Pipeline

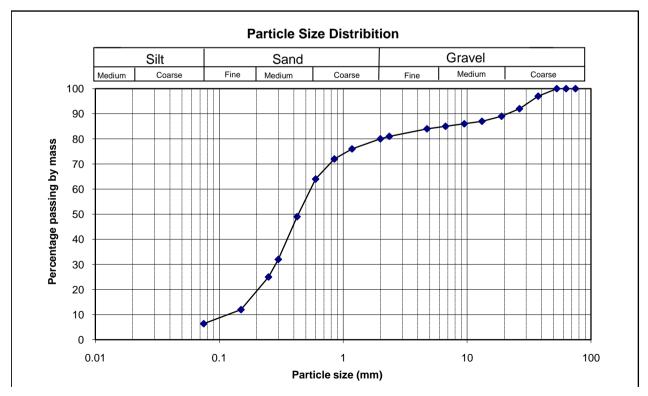
	SAND GRADI	NG / CBR RES	SULT SUMMARY	
ATT:	Dick Bradshaw	REF. NO:	L110676	
			·	

SAMPLE NO: 18832

CLIENT:

CLIENT SAMPLE NO.

SAMPLE DESCRIPTION dark brown gravelly sand


PROJECT:

SAMPLE POSITION MP 2 @ 0.8-1.8m

SIEVE ANALYSIS								
Sieve	Percentage		Sieve	Percentage				
mm	Passing		mm	Passing				
75			2.36	81				
63			2.00	80				
53	100		1.18	76				
37.5	97		0.850	72				
26.5	92		0.600	64				
19	89		0.425	49				
13.2	87		0.300	32				
9.50	86		0.250	25				
6.70	85		0.150	12				
4.750	84		0.075	6.4				

RA Bradshaw & Associates

	ATTERBERG LIMITS								
Р	lastic Index	N-P							
Linear S	hrinkage %								
	MOD	/ CBR							
	MOD								
	O.M.C.								
	100%								
	98%								
	95%								
	93%								
	90%								
	Max Swell								

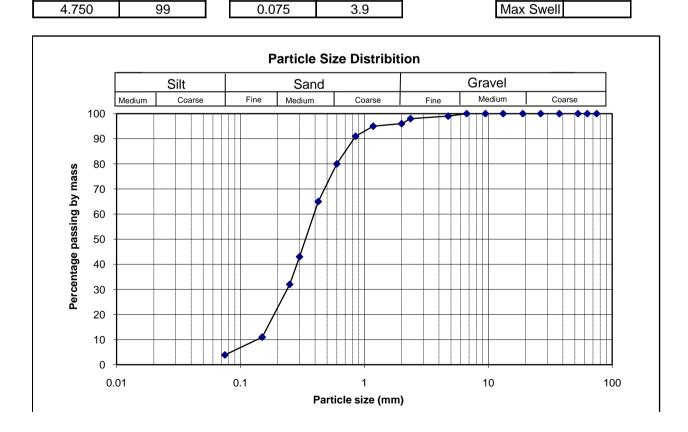
93%

90%

CLIENT:	RA Bradshaw &	Associates	PROJECT:	Breede River P	ipeline					
ATT:	Dick Bradshaw		REF. NO:	L110676						
SAND GRADING / CBR RESULT SUMMARY										
SAMPLE NO: CLIENT SAMPLE NO. SAMPLE DESCRIPTION 18833 dark brown sand										
MP 3 @ 0.8-			1							
			J							
	SIEVE A	NALYSIS		_	ATTERBER	G LIMITS				
Sieve	Percentage	Sieve	Percentage		Liquid Limit					
mm	Passing	mm	Passing	P	lastic Index	N-P				
75		2.36	98	Linear S	hrinkage %					
63		2.00	96]	MOD	/ CBR				
53		1.18	95]	MOD					
37.5		0.850	91]	O.M.C.					
26.5		0.600	80]	100%					
19		0.425	65]	98%					
13.2		0.300	43]	95%					

32

11

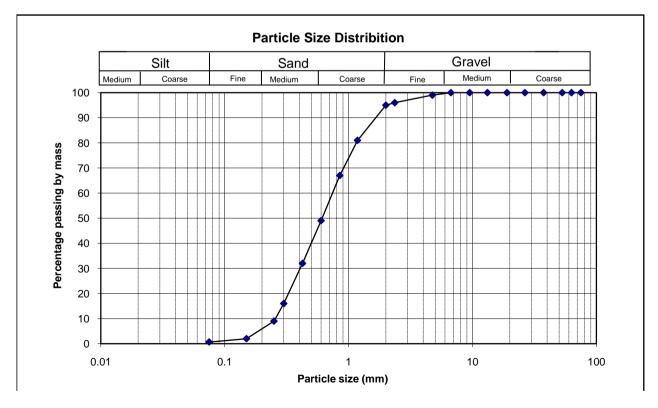

0.250

0.150

9.50

6.70

100



CLIENT:	ENT: RA Bradshaw & Associates			Breede River Pipeline
ATT:	Dick Bradshaw		REF. NO:	L110676
	SAM	ID GRADING	G / CBR RES	ULT SUMMARY
SAMPLE NO: 18834]	CLIENT SAMPL	E NO.	SAMPLE DESCRIPTION yellow brown sand
SAMPLE POS	-			
MP 4 @ 0.9-7	1.6m			
	SIEVE			ATTERBERG LIMITS
Sieve	Percentage	Sieve	Percentage	Liquid Limit

Sieve	Percentage	Sieve	Percentage
mm	Passing	mm	Passing
75		2.36	96
63		2.00	95
53		1.18	81
37.5		0.850	67
26.5		0.600	49
19		0.425	32
13.2		0.300	16
9.50		0.250	9
6.70	100	0.150	2
4.750	99	0.075	0.7

	ATTERBERG LIMITS								
Р	lastic Index	N-P							
Linear S	hrinkage %								
	MOD	/ CBR							
	MOD								
	O.M.C.								
	100%								
	98%								
	95%								
	93%								
	90%								
	Max Swell								

CLIENT:	RA Bradsh 17 Midwoo Newlands	aw& Associa d Avenue	tes	PRO	JECT:	Breede Rive	er Pipeline	
	7700			DATE	:	28-06-2011		
ATT:	Dick Brads			REF:		L110676		
		AS	STM D4	422 SIEV	E ANALY	SIS		
DES	SCRIPTION :	yellow olive cla	ayey sand] s/	AMPLE NO. :	18835	
	POSITION :	MP 5 @ 1.15-	1.85m		CLIENT SA	AMPLE NO. :		
Sieve A	nalysis	Percent Passing		Hydromet	er Analysis		SCS Disp	ersion Test
	75.00			Diameter of	Percentage of		Diameter of	Percentage of
	63.00			particle (mm)	soil suspension (%)		particle (mm)	soil suspension (%)
	53.00			0.0742	22			
	37.50			0.0378	16			
	26.50			0.0190	13			
	19.00			0.0099	11			
SIEVE SIZE (mm)	13.20			0.0034	10			
с) Ш	9.50			0.0025	10			
	6.70			0.0014	8			
Щ.	4.75	100					1	1
	2.36	99		· · · · ·	-	cific Gravity:		
0)	2.00	99		Ini	tial Moisture C	()		
	1.18	99			• • •	pH :		
	0.600	96 90			Conduct	ivity mS/m :]
	0.425	90 78			Particle Siz	e Distributio	n	
	0.300	41					** ****	┑ ╺╷ ╸ ╒╸
	0.0750	23	90 —			1		
			80 -			7		
	tterberg Limit		p ⁷⁰					
	<i>1H1 A2. A3 &</i> d Limit	: A4	58 60			/		
	c Index	S-P	Percentage Passing		+++++++++++,	/		
	hrinkage	5-1	a 40 -		↓ ↓ ↓ ↓			
Linear O	пппкауе		30 -		/			
MOD AASHT	TO ; C.B.R. : A7 & A8	TMH1	20		•			
MOD AAS	HTO (Kg/m³)							
O.M.C	C. (%)		0	0.010	0.100	1.000	10.000	100.000
	100% Comp.			[Partio	support		Deveentere
	98 % Comp.			Crovel : Dr	Tabulated			Percentage
C.B.R. @ 9	95 % Comp.				entage - 4.75 m			0
C.B.R. @ 9	93 % Comp.				ntage - 4.75mm			76
C.B.R. @ 9	90 % Comp.				age - 0.075mm		nm	14
Swell (max)%			Clay : Percen	tage - 0.002mm	ו		9

While the tests are carried out according to recognized standards Geoscience shall not be liable for erroneous testing or reporting thereof. This report may not be reproduced except in full without prior consent of Geoscience.

CLIENT:	RA Bradsh 17 Midwoo Newlands	aw& Associa d Avenue	tes	es PROJE		Breede Rive	er Pipeline	
	7700			DATE	:	28-06-2011		
ATT:	Dick Brads			REF:		L110676		
		AS	STM D	422 SIEV	EANALY	SIS		
DES	CRIPTION :	dark brown sa	nd		S/	AMPLE NO. :	18836	
	POSITION :	MP 6 @ 0-1.7	m		CLIENT S	AMPLE NO. :		
Sieve A	nalysis	Percent Passing		Hydromet	er Analysis		SCS Disp	ersion Test
	75.00			Diameter of	Percentage of		Diameter of	Percentage of
	63.00			particle (mm)	soil suspension (%)		particle (mm)	soil suspension (%)
	53.00			0.0742	23			
	37.50			0.0378	16			
	26.50			0.0192	10			
	19.00			0.0100	8			
SIEVE SIZE (mm)	13.20			0.0035	6			
) Ш	9.50 6.70			0.0025	6 5			
SIZ	4.75			0.0015	5			
E N	2.36				Spe	cific Gravity:		1
SE	2.00			Init	tial Moisture C	-		
	1.18	100				pH :		
	0.600	98			Conduct	ivity mS/m :		
	0.425	94			Dertiele Cir	o Diotrikutio	-	_
	0.300	84	100 _		Particle Siz	e Distributio	n ++,,,,,,,,,,,,,	• • • • •
	0.150	46	90 —			//		
	0.0750	23	80 -			†		
A	tterberg Limit	ts :	70 -			////////		
	1H1 A2. A3 &	: A4	l ss 60 –			/		
· · ·	d Limit		l a 1 g 1 g 1 g 1 g 1 g 1 g 1 g 1 g 1 g 1 g			/		
	c Index	N-P			1			
Linear S	hrinkage							
MOD AASHT	TO ; C.B.R. : A7 & A8	TMH1	20 -					
MOD AASI	HTO (Kg/m³)		10 +	• • • • • •	•			
O.M.C	C. (%)		0	0.010	0.100	1.000	10.000	100.000
C.B.R. @ 1	100% Comp.			0.010	Partie	cle Size (mm)	10.000	100.000
	98 % Comp.				Tabulated	Summary		Percentage
	95 % Comp.			Gravel : Perce	entage - 4.75 m	ım		0
	93 % Comp.					77		
	90 % Comp.			Silt : Percenta	age - 0.075mm	and + 0.002n	nm	17
	max)%		1	Clay : Percent	tage - 0.002mn	n		6
(,			L				•

CLIENT:	RA Bradsh 17 Midwoo Newlands	aw& Associa d Avenue	tes	PRO	JECT:	Breede Rive	er Pipeline	
	7700			DATE	:	28-06-2011		
ATT:	Dick Brads			REF:		L110676		
		AS	STM D4	422 SIEV	E ANALY	SIS		
DES	SCRIPTION :	It olive & grey	sand		l s/	AMPLE NO. :	18837	
		MP 7 @ 0.4-1			CLIENT SA	MPLE NO. :		
Sieve A	Sieve Analysis Percent Passing]	Hydromet	er Analysis		SCS Disp	ersion Test
	75.00			Diameter of	Percentage of		Diameter of	Percentage of
	63.00			particle (mm)	soil suspension (%)		particle (mm)	soil suspension (%)
	53.00			0.0769	10			
	37.50			0.0391	5			
	26.50			0.0195	3			
_	19.00			0.0101	3			
SIEVE SIZE (mm)	13.20			0.0035	3			
ц С	9.50			0.0025	3			
SIZ	6.70			0.0015	3	_		
ШŅ	4.75							1
ы С	2.36			Init	tial Moisture C	cific Gravity:		
	2.00 1.18					. ,		
	0.600	100			Conduct	pH : ivity mS/m :		
	0.000	99			Conduct			<u> </u>
	0.300	89	100 —		Particle Siz	e Distributio	n	····
	0.150	35	90 -					
	0.0750	10				1		
		4						
	tterberg Limit 1H1 A2, A3 &		- 70 - E					
	d Limit		60					
Plastic	c Index	N-P	Percentage Passing - 05					
Linear S	Shrinkage		¥ 40 +					
			30 -					
	TO ; C.B.R. : A7 & A8	TMH1	20 — 10 —					
	HTO (Kg/m³)			●				
	C. (%)		0.001	0.010	0.100 Partir	1.000 cle Size (mm)	10.000	100.000
	C.B.R. @ 100% Comp.			[Tabulated			Percentage
C.B.R. @ 98 % Comp.			Gravel · Perce	entage - 4.75 m	-		0	
	95 % Comp. 93 % Comp.				ntage - 4.75 m		mm	90
	90 % Comp.			Silt : Percenta	age - 0.075mm	and + 0.002n	nm	7
	max)%				tage - 0.002mm			3
5	,,,,		1	L				

While the tests are carried out according to recognized standards Geoscience shall not be liable for erroneous testing or reporting thereof. This report may not be reproduced except in full without prior consent of Geoscience.

CLIENT:	17 Midwoo	aw& Associa d Avenue	tes					
	Newlands 7700			DATE	=.	28-06-2011		
ATT:	Dick Brads	haw		REF:		L110676		
		A	STM D4	422 SIEV	E ANALY	SIS		
		It green clayey				MPLE NO. :	18838	
	POSITION :	MP 8 @ 0.9-1	.3m	F	CLIENT 5/	MPLE NO. :		
Sieve A	Sieve Analysis Percent Passing			Hydromet	er Analysis		SCS Disp	ersion Test
	75.00			Diameter of	Percentage of		Diameter of	Percentage of
	63.00			particle (mm)	soil suspension (%)		particle (mm)	soil suspension (%)
	53.00			0.0715	28			
	37.50			0.0362	25			
	26.50			0.0182	22			
	19.00			0.0094	22			
SIEVE SIZE (mm)	13.20			0.0033	21			
<u>د</u>	9.50			0.0024	21			
SIZE	6.70	100		0.0014	21			
ц	4.75	99		F				•
N E N	2.36	99				cific Gravity:		
S	2.00	99		Init	tial Moisture C	ontent (%) :		
	1.18	99				рН :		
	0.600	98			Conduct	ivity mS/m :		
	0.425	78			Particle Siz	e Distributio	n	
	0.300	61	100				┿╋┼╌┼╋╎╋╎╋╺	┑╺╷┑┍┍ ╓╖ │
	0.150	45	90 -			<i>[</i>		
	0.0750	29	80					
At	terberg Limit	ts :	_ 70 +					
	<u>H1 A2. A3 &</u>	: A4	Buiss 60					
Liquid	l Limit	29	D d de					
Plastic	: Index	10			×			
Linear S	hrinkage	5.0						
MOD AASHT	TO ; C.B.R. : A7 & A8	TMH1	20 -	• • • • • •	• •			
MOD AASH	HTO (Kg/m³)		10 -					
	C. (%)		0	0.010	0.100	1.000	10.000	100.000
C.B.R. @ 1	00% Comp.			<u> </u>		le Size (mm)		
C.B.R. @ 98 % Comp.					Tabulated	-		Percentage
C.B.R. @ 95 % Comp.					entage - 4.75 m			1
C.B.R. @ 9	93 % Comp.			Sand : Percentage - 4.75mm and + 0.075mm				71
C.B.R. @ 9	90 % Comp.				Silt : Percentage - 0.075mm and + 0.002mm			
Swell (max)%		J	Clay : Percen	tage - 0.002mm	1		21

While the tests are carried out according to recognized standards Geoscience shall not be liable for erroneous testing or reporting thereof. This report may not be reproduced except in full without prior consent of Geoscience.

CLIENT:	RA Bradsh 17 Midwoo Newlands	aw& Associa d Avenue	tes	PRO	JECT:	Breede Rive	er Pipeline	
	7700			DAT	E:	28-06-2011		
ATT:	Dick Brads	haw		REF:		L110676		
		A	STM D4	122 SIEV	E ANALY	'SIS		
DES	SCRIPTION :	yellow olive &	arev sandv	r clav	l s	AMPLE NO. :	18839	
		MP 8 @ 2.15-		olay		AMPLE NO. :		
Sieve A	analysis	Percent Passing		Hydromet	er Analysis		SCS Disp	ersion Test
	75.00	0		Diameter of	Percentage of		Diameter of	Percentage of
	63.00			particle (mm)	soil suspension (%)		particle (mm)	soil suspension (%)
	53.00			0.0657	59			()07
	37.50			0.0340	49			
	26.50			0.0173	43			
	19.00	100		0.0091	37			
SIEVE SIZE (mm)	13.20	99		0.0032	31			
<u>د</u>	9.50	98		0.0023	31			
IZE	6.70	96		0.0013	31			
Ш	4.75	95					-	_
≥ ⊒	2.36	94			Spe	cific Gravity:		
N	2.00	94		Ini	tial Moisture C	Content (%) :		
	1.18	93				рН :		
	0.600	92			Conduct	ivity mS/m :		
	0.425	88			Particle Siz	e Distributio	n	
	0.300	79	100 _					4 • 4 •
	0.150	70	90 -				** * *	
	0.0750	61	80 -					
A	tterberg Limi	ts :	70 -		x			
TA	1H1 A2. A3 &		ssing 60					
Liqui	d Limit	37	ge Pa					
Plasti	c Index	22	Percentage Passing 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					
Linear S	Shrinkage	10.0						
MOD AASH	TO ; C.B.R. : A7 & A8	TMH1	20 -					
MOD AAS	HTO (Kg/m³)		10					
O.M.(C. (%)		0	0.010	0.100	1.000	10.000	100.000
C.B.R. @	100% Comp.		0.001		Parti	1.000 cle Size (mm)	10.000	100.000
C.B.R. @ 98 % Comp.				Tabulated	Summary		Percentage	
	95 % Comp.			Gravel : Perc	entage - 4.75 n	าฑ		5
	93 % Comp.			Sand : Percer	ntage - 4.75mm	n and + 0.075r	mm	34
	90 % Comp.			Silt : Percenta	age - 0.075mm	and + 0.002m	nm	30
	(max)%			Clay : Percen	tage - 0.002mr	n		31

While the tests are carried out according to recognized standards Geoscience shall not be liable for erroneous testing or reporting thereof. This report may not be reproduced except in full without prior consent of Geoscience.

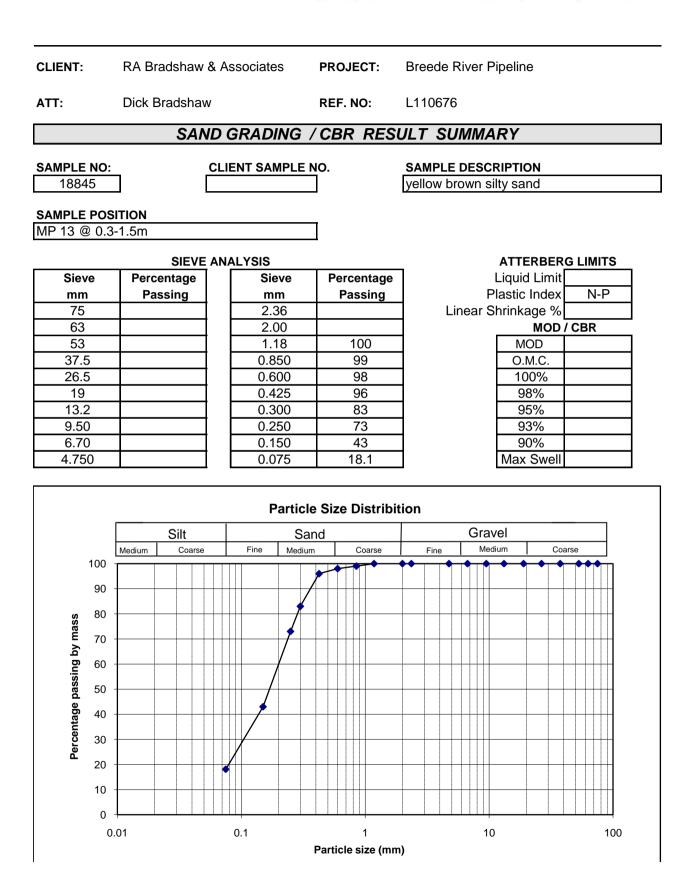
CLIENT:	RA Bradsha 17 Midwood	aw& Associa d Avenue	tes	PRO	JECT:	Breede Rive	er Pipeline	
	Newlands							
	7700			DATE		28-06-2011		
ATT:	Dick Brads			REF:		L110676		
		A	STM D	422 SIEV	E ANALY	SIS		
DES	SCRIPTION :	ellow brown	sand			AMPLE NO. :	18840	
	POSITION :	MP 9 @ 0.2-1	.0m		CLIENT S	AMPLE NO. :		
Sieve A	Analysis	Percent Passing		Hydromet	er Analysis		SCS Dispe	ersion Test
	75.00			Diameter of	Percentage of		Diameter of	Percentage of
	63.00			particle (mm)	soil suspension (%)		particle (mm)	soil suspensie (%)
	53.00			0.0762	15			
	37.50			0.0388	8			
	26.50			0.0194	6			
	19.00			0.0101	3			
SIEVE SIZE (mm)	13.20			0.0035	3			
с) Щ	9.50			0.0025	3			
SIZ	6.70			0.0015	3			
ΛE	4.75 2.36				Sno	cific Gravity:		
SE	2.00			Ini	tial Moisture C			
	1.18	100				pH :		
	0.600	99			Conduct	ivity mS/m :		
	0.425	93						
	0.300	71	100 -		Particle Siz	e Distributio	n 🔸	
	0.150	41	90 -			F _		
	0.0750	14	80					
A	tterberg Limit	c •	1					
	111 A2. A3 &		90					
Liqui	d Limit		- 06 Hassing			7		
Plasti	c Index	N-P	65 0 +			/		
Linear S	Shrinkage		40 t		1			
	TO 0.0.0		30 +		++++++ - /-			
	TO ; C.B.R. : A7 & A8	TMH1	20 -					
MOD AAS	HTO (Kg/m³)		10 +					
O.M.(0	0.010		1.000	40.000	100.00
	100% Comp.		0.001	0.010	Parti	1.000 cle Size (mm)	10.000	100.00
C.B.R. @ 98 % Comp.			1		Tabulated	Summary		Percentag
C.B.R. @ 95 % Comp.			1	Gravel : Perce	entage - 4.75 n	าฑ		0
	93 % Comp.		1	Sand : Percentage - 4.75mm and + 0.075mm			nm	86
	90 % Comp.			Silt : Percenta	age - 0.075mm	and + 0.002m	ım	11
Swell ((max)%			Clay : Percent	tage - 0.002mr	n		3

CLIENT: RA Bradshaw& Associate 17 Midwood Avenue Newlands		tes	PROJECT: B		Breede Rive	Breede River Pipeline		
	7700			DATI	E:	28-06-2011		
ATT:	Dick Brads			REF		L110676		
		AS	STM D	422 SIEV	E ANALY	SIS		
DES	SCRIPTION :	yellow olive sil	tv sand		l s/	AMPLE NO. :	18841	
		MP 10 @ 0.45			CLIENT S	AMPLE NO. :		
Sieve Analysis Percent Passing		Percent		Hydromet	er Analysis		SCS Dispe	ersion Test
	75.00			Diameter of	Percentage of		Diameter of	Percentage of
	63.00			particle (mm)	soil suspension (%)		particle (mm)	soil suspension (%)
	53.00			0.0663	48			()07
	37.50	100		0.0340	42			
	26.50	99		0.0173	37			
	19.00	97		0.0093	26			
(mr	13.20	96		0.0034	12			
u) II	9.50	95		0.0024	11			
SIEVE SIZE (mm)	6.70	94		0.0014	8			
Щ Ц	4.75	92						1
Ē	2.36	84			_	cific Gravity:		
0	2.00	82		Ini	tial Moisture C			
	1.18	78				рН :		
	0.600	71			Conduct	ivity mS/m :		
	0.425	67			Particle Siz	e Distributio	n	
	0.300 0.150	61 55	100					**** **
	0.150	<u>55</u>	90 -					
TN	tterberg Limit 1H1 A2. A3 &	ts : 2 A4	- 08 - 07 - 08 - 08 - 08 - 08 - 08 - 08 - 08 - 08					
Liquid	d Limit	40	a Bage 50 →					
Plastic	c Index	8	40 —					
Linear S	hrinkage	4.0	30		*			
MOD AASH	TO ; C.B.R. : A7 & A8	TMH1	20 -					
MOD AAS	HTO (Kg/m³)		10 +	•				
O.M.(C. (%)		0	0.010	0 100	1.000	10.000	100.000
	100% Comp.		0.001	0.010	Parti	1.000 cle Size (mm)	10.000	100.000
C.B.R. @ 98 % Comp.				Tabulated	Summary		Percentage	
C.B.R. @ 95 % Comp.			Gravel : Perc	entage - 4.75 m	ım		8	
	93 % Comp.			Sand : Percentage - 4.75mm and + 0.075mm				41
	90 % Comp.			Silt : Percentage - 0.075mm and + 0.002mm				42
	max) %				tage - 0.002mn			9

While the tests are carried out according to recognized standards Geoscience shall not be liable for erroneous testing or reporting thereof. This report may not be reproduced except in full without prior consent of Geoscience.

CLIENT:	CLIENT: RA Bradshaw& Associat 17 Midwood Avenue Newlands		tes	PRO	JECT:	T: Breede River Pipeline		
	7700			DATE	:	28-06-2011		
ATT:	Dick Bradsh			REF:		L110676		
		AS	STM D	422 SIEV	E ANALY	SIS		
DES		ellow olive cla	avev sand		S/	MPLE NO. :	18842	
	POSITION :				CLIENT SA	MPLE NO. :		
Sieve A	Sieve Analysis Percent Passing			Hydromet	er Analysis		SCS Dispe	ersion Test
	75.00			Diameter of	Percentage of		Diameter of	Percentage of
	63.00			particle (mm)	soil suspension (%)		particle (mm)	soil suspension (%)
	53.00			0.0648	57			
l	37.50			0.0324	55			
	26.50			0.0164	52			
	19.00	100		0.0088	44			
(m	13.20	98		0.0032	29			
SIEVE SIZE (mm)	9.50	97		0.0023	25			
SIZE SIZE	6.70	97		0.0014	22			
ш	4.75	95		-				
Ξ	2.36	85				cific Gravity:		
S	2.00	83		Init	ial Moisture C	ontent (%) :		
	1.18	79				рН :		
	0.600	73			Conduct	ivity mS/m :		
	0.425	70			Particle Siz	e Distributio	n	
	0.300	65	100 T					• • • • •
	0.150	61	90 —					
	0.0750	57	80 -					
A	tterberg Limit	s :	_ 70 -					
	<u>1H1 A2. A3 &</u>							
Liqui	d Limit	39	8 50 -		••			
Plasti	c Index	11	Percentage Passing 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					
Linear S	Shrinkage	5.0						
MOD AASH	TO ; C.B.R. : A7 & A8	TMH1	30 -					
MOD AAS	HTO (Kg/m³)		10 -					
O.M.(C. (%)		0	0.010	0.100	1.000	10.000	100.000
C.B.R. @ 100% Comp.		0.001	0.010	Partic	cle Size (mm)	10.000	100.000	
C.B.R. @ 98 % Comp.				Tabulated	Summary		Percentage	
C.B.R. @ 95 % Comp.			Gravel : Perce	entage - 4.75 m	ım		5	
	93 % Comp.			Sand : Percer	Sand : Percentage - 4.75mm and + 0.075mm			38
	90 % Comp.			Silt : Percenta	ige - 0.075mm	and + 0.002n	nm	33
Swell ((max)%			Clay : Percent	tage - 0.002mm	ı		24

While the tests are carried out according to recognized standards Geoscience shall not be liable for erroneous testing or reporting thereof. This report may not be reproduced except in full without prior consent of Geoscience.


CLIENT:	JENT: RA Bradshaw& Associates 17 Midwood Avenue Newlands			PROJECT: Breede Rive			er Pipeline	
	7700			DATE: 28-				
ATT:	Dick Brads			REF:		L110676		
		A	STM D4	422 SIEV	E ANALY	SIS		
DES	SCRIPTION :	off-white claye	ey sandy silt		S	AMPLE NO. :	18843	
	POSITION :	MP 11 @ 0.8-	2.0m		CLIENT S/	AMPLE NO. :		
Sieve A	Sieve Analysis Percent Passing			Hydromet	er Analysis		SCS Dispe	ersion Test
	75.00			Diameter of	Percentage of		Diameter of	Percentage of
	63.00			particle (mm)	soil suspension (%)		particle (mm)	soil suspension (%)
	53.00			0.0609	81			
	37.50			0.0324	66			
	26.50			0.0170	52			
	19.00			0.0093	32			
SIEVE SIZE (mm)	13.20			0.0034	10			
u)	9.50			0.0025	6			
SIZE	6.70			0.0015	5			
, Е	4.75						1	1
Ш Ш	2.36				-	cific Gravity:		
0)	2.00			Init	tial Moisture C	. ,		
	1.18					рН :		
	0.600	400	[Conduct	ivity mS/m :		
	0.425	100			Particle Siz	e Distributio	n	
	0.300 0.150	99 95	100		×	┟╼┲╋╋╢╢╋	* * * * * *	
	0.150	95 85	90 -					
			80 -					
	tterberg Limi		70 —					
	<i>IH1 A2. A3 &</i> d Limit	<u>: A4</u> 33	- 09 ^{gas} ii		-/			
	c Index	5	60	<u> </u>	6			
			40 -	/				
Linear 5	hrinkage	2.0	30					
MOD AASHT	TO ; C.B.R. : A7 & A8	ТМН1	20 —					
MOD AAS	HTO (Kg/m³)							
O.M.C	C. (%)		0	0.010	0.100	1.000	10.000	100.000
C.B.R. @ 1	C.B.R. @ 100% Comp.			0.010	Partie	cle Size (mm)		
C.B.R. @ 98 % Comp.				ļ	Tabulated	-		Percentage
C.B.R. @ 95 % Comp.				Gravel : Percentage - 4.75 mm				0
C.B.R. @ 9	93 % Comp.			Sand : Percentage - 4.75mm and + 0.075mm				15
C.B.R. @	90 % Comp.			Silt : Percentage - 0.075mm and + 0.002mm				79
Swell (max)%			Clay : Percen	tage - 0.002mn	n		6

While the tests are carried out according to recognized standards Geoscience shall not be liable for erroneous testing or reporting thereof. This report may not be reproduced except in full without prior consent of Geoscience.

CLIENT:		dwood Avenue			JECT:	Breede Rive	er Pipeline	
	7700			DATE	:	28-06-2011		
ATT:	Dick Brads			REF:		L110676		
		AS	STM D4	122 SIEV	E ANALY	SIS		
DES		dark red brow MP 12 @ 1.0-2				AMPLE NO. : AMPLE NO. :	18844	
			1				l	
Sieve A	Sieve Analysis Percent Passing			Hydromet	er Analysis		SCS Disp	ersion Test
	75.00			Diameter of	Percentage of		Diameter of	Percentage of
	63.00			particle (mm)	soil suspension (%)		particle (mm)	soil suspension (%)
	53.00			0.0702	44			
	37.50			0.0358	36			
	26.50			0.0182	29			
	19.00			0.0097	21			
SIEVE SIZE (mm)	13.20			0.0035	8			
<u>با</u>	9.50			0.0025	6			
SIZE	6.70			0.0015	3			
ш	4.75							
≥ E	2.36				_	cific Gravity:		
S	2.00	100		Init	tial Moisture C	ontent (%) :		
	1.18	92				рН :		
	0.600	77			Conduct	ivity mS/m :		<u> </u>
	0.425	70			Particle Siz	e Distributio	n	
	0.300	61	100 —				┅ ╸╷╷╸┍╷┍	• • • • • []
	0.150	54	90 -			× ×		
	0.0750	47	80					
A	tterberg Limit	ts :	70 -					
	<u>1H1 A2. A3 &</u>							
Liquic	d Limit	36	de Pa					
Plastic	c Index	3	60		L AN			
Linear S	hrinkage	1.0						
MOD AASHT	TO ; C.B.R. : A7 & A8	TMH1	20 -					
MOD AASI	HTO (Kg/m³)		10 +					
	C. (%)		0	0.010	0.100	1.000	10.000	100.000
C.B.R. @ 100% Comp.				Partic	cle Size (mm)			
C.B.R. @ 98 % Comp.					Tabulated	Summary		Percentage
C.B.R. @ 95 % Comp. Gravel : Percentage			entage - 4.75 m	nm		0		
				Sand : Percer	Percentage - 4.75mm and + 0.075mm			
	90 % Comp.			Silt : Percentage - 0.075mm and + 0.002mm				42
Swell (max)%			Clay : Percent	tage - 0.002mn	n		5

CLIENT:	CLIENT: RA Bradshaw& Associates 17 Midwood Avenue Newlands			s PROJECT : Breede			er Pipeline	
	7700			DATE	:	28-06-2011		
ATT:	Dick Brads	haw		REF:		L110676		
		AS	STM D4	422 SIEV	E ANALY	SIS		
DES	SCRIPTION :	yellow brown o	clayey sand	1	S/	AMPLE NO. :	18846	
		, MP 13 @ 1.5-:			CLIENT SA	AMPLE NO. :		
Sieve A	Sieve Analysis Percent Passing			Hydromet	er Analysis		SCS Dispo	ersion Test
	75.00			Diameter of	Percentage of		Diameter of	Percentage of
	63.00			particle (mm)	soil suspension (%)		particle (mm)	soil suspension (%)
	53.00			0.0729	29			
	37.50			0.0371	22			
	26.50			0.0187	19			
	19.00			0.0098	18			
SIEVE SIZE (mm)	13.20			0.0034	14			
ц Ц	9.50			0.0024	13			
SIZE	6.70			0.0014	13			
щ	4.75							1
Ц	2.36				-	cific Gravity:		
ഗ	2.00	100		Init	tial Moisture C	ontent (%) :		
	1.18	99				pH :		
	0.600	98			Conduct	ivity mS/m :]
	0.425	97			Particle Siz	e Distributio	n	
	0.300	83	100			· · · · · · · · · · · · · · · · · · ·	** * * * *	+ + + +
	0.150	57	90 -			+		
	0.0750	30	80 -			1		
A	tterberg Limi	ts:				/		
	1H1 A2. A3 &	2 A4	se 60		/	/		
	d Limit		⁶ ⁸ 50 –		7			
Plastic	c Index	S-P	Percentage Passing					
Linear S	hrinkage		30					
MOD AASH	TO ; C.B.R. : A7 & A8	TMH1	20		•			
MOD AAS	HTO (Kg/m³)		10					
	C. (%)		0			1 000	10.000	100.000
	100% Comp.		0.001	0.010	Partie	1.000 cle Size (mm)	10.000	100.000
C.B.R. @ 98 % Comp.				Tabulated Summary				Percentage
	95 % Comp.			Gravel : Perce	entage - 4.75 m	ım		0
	93 % Comp.			Sand : Percentage - 4.75mm and + 0.075mm				70
	90 % Comp.				age - 0.075mm			17
	max) %			Clay : Percent	tage - 0.002mn	า		13

APPENDIX D

RESULTS OF LABORATORY TESTS ON WATER SAMPLES

16 Van der Berg Crescent Gant's Centre Strand Tel.(021) 853-1490Fax.(021) 853-1423Cell.082-804-7499E-Mailakotze@bemlab.co.za

PO Box 684 Somerset Mall, 7137

Vat Reg. No. 4200161414

SANAS Accredited Testing Laboratory No T0475

Report No.: WT4591/2011

Nanine Gildenhuys R.A. Bradshaw & Associates 17 Midwood Avenue Newlands 7708

Water Analyses Report

Date received: 14/06/2011 Date tested: 15/06/2011

Date tested. 15/06/2011											
Reference	Lab.	pН	Alkalinity	CI	SO4	Ca	TDS				
No.	No.		mg/l	mg/l	mg/l	mg/l	mg/l				
MP6	4591	6.9	144.074	154.517	15.427	17.975	237.0				
MP7	4592	6.7	60.240	220.738	5.107	6.459	77.3				
MP8	4593	7.0	32.630	246.344	107.980	10.039	588.0				

Breede River Pipeline Project

Sample conditions

Samples in good condition.

Statement

The reported results may be applied only to samples recieved. Any recommendations included with this report are based on the assumption that the samples were representative of the bulk from which they were taken. Opinions and recommendations are not accredited.

Dr. W.A.G. Kotzé

17-06-2011

Date

for BemLab

Technical Signatory: Dr. W.A.G. Kotzé Arrie van Deventer (Chemical Analyses) Annerina Esterhuyse (Microbiology)